Python递归及斐波那契数列

递归函数

在函数内部,可以调用其他函数。如果一个函数在内部调用自身本身,这个函数就是递归函数。
举个例子,我们来计算阶乘 n! = 1 * 2 * 3 * ... * n,用函数 fact(n)表示,可以看出:
fact(n) = n! = 1 * 2 * 3 * ... * (n-1) * n = (n-1)! * n = fact(n-1) * n
所以,fact(n)可以表示为 n * fact(n-1),只有n=1时需要特殊处理。
于是,fact(n)用递归的方式写出来就是:

def fact(n):
    if n==1:
      return 1
    return n * fact(n - 1)    

讲解

上面就是一个递归函数。可以试试:
>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000L
如果我们计算fact(5),可以根据函数定义看到计算过程如下:
===> fact(5)
===> 5 * fact(4)
===> 5 * (4 * fact(3))
===> 5 * (4 * (3 * fact(2)))
===> 5 * (4 * (3 * (2 * fact(1))))
===> 5 * (4 * (3 * (2 * 1)))
===> 5 * (4 * (3 * 2))
===> 5 * (4 * 6)
===> 5 * 24
===> 120
递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。
使 用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返 回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。可以试试计算 fact(10000)。

def digui(n):
    sum = 0
    if n<=0:
        return 1
    else:
        return n*digui(n-1)
 
print(digui(5))

求知若渴, 虛心若愚

python对列表int的排序及斐波那契数列

    li = [33,2,10,3]  
    for j in range(1,le(i))     #  
        for  i in range(len(li) - 1):   #一个数做多次对比  
        if li[i] > li[i + 1]:   #做判断条件  
            temp = li[i]     #满足的话替换  
            li[i] = li[i + 1]  
            li[i + 1] = temp   
    print(li)  

既然排序ok,那就斐波那契数列

利用函数编写如下数列:

斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368...

def fibo(n):
    def fib_iter(n,x, y):
        if n == 0:
            return x
        else:
            return fib_iter(n-1, y, x+y)

    return fib_iter(n, 0, 1)

 

posted @ 2016-07-01 23:30  我当道士那儿些年  阅读(2923)  评论(0编辑  收藏  举报