Python的递推式构造列表(List comprehension)
介绍
我们在上一章学习了“Lambda 操作, Filter, Reduce 和 Map”, 但相对于map, filter, reduce 和lamdba, Guido van Rossum更喜欢用递推式构造列表(List comprehension)。在这一章我们将会涵盖递推式构造列表(List comprehension)的基础功能。 递推式构造列表(List comprehension)是在Python 2.0中添加进来的。本质上,它是一种数学家用来实现众所周知标记集合的Python方式。
在数学上,自然数的平方数是:{ x2 | x ∈ ℕ } 或者复数:{ (x,y) | x ∈ ℤ ∧ y ∈ ℤ }.
在Python里,递推式构造列表(List comprehension)是一种定义和创建列表的优雅方式,这些列表通常是有一些约束的集合,并不是所有案例的集合。
对于函数map(), filter(), 和reduce(),递推式构造列表(List comprehension)是一个完整的lambda替代者。对于大部分人们,递推式构造列表(List comprehension)的语法更容易被人们掌握。
举列
在lamdba和map()这一章里,我们曾经设计了map()函数去把摄氏度的值转化为华氏度的值及其反函数。用递推式构造列表(List comprehension),可以这样表示:
>>> Celsius = [39.2, 36.5, 37.3, 37.8] >>> Fahrenheit = [ ((float(9)/5)*x + 32) for x in Celsius ] >>> print Fahrenheit [102.56, 97.700000000000003, 99.140000000000001, 100.03999999999999] >>>
下面的递推式构造列表(list comprehension)创建了毕达哥拉斯三元组:
>>> [(x,y,z) for x in range(1,30) for y in range(x,30) for z in range(y,30) if x**2 + y**2 == z**2] [(3, 4, 5), (5, 12, 13), (6, 8, 10), (7, 24, 25), (8, 15, 17), (9, 12, 15), (10, 24, 26), (12, 16, 20), (15, 20, 25), (20, 21, 29)] >>>
两个集合的交叉乘积:
>>> colours = [ "red", "green", "yellow", "blue" ] >>> things = [ "house", "car", "tree" ] >>> coloured_things = [ (x,y) for x in colours for y in things ] >>> print coloured_things [('red', 'house'), ('red', 'car'), ('red', 'tree'), ('green', 'house'), ('green', 'car'), ('green', 'tree'), ('yellow', 'house'), ('yellow', 'car'), ('yellow', 'tree'), ('blue', 'house'), ('blue', 'car'), ('blue', 'tree')] >>>
递推式构造生成器(Generator Comprehension)
递推式构造生成器(generator comprehension)在Python2.6中被介绍过。它们是一个简单的用圆括号括起来的生成表达式,除此之外,它的语法和工作原来都很像递推式构造列表(List comprehension),但是递推式构造生成器(generator comprehension)返回的是一个生成器而不是一个列表。
>>> x = (x **2 for x in range(20)) >>> print(x) at 0xb7307aa4> >>> x = list(x) >>> print(x) [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361]
一些更高级的例子
利用埃拉托斯特尼筛法(Sieve of Eratosthenes)计算1到100的质数:
>>> noprimes = [j for i in range(2, 8) for j in range(i*2, 100, i)] >>> primes = [x for x in range(2, 100) if x not in noprimes] >>> print primes [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] >>>
我们把前面的例子写成更通俗的格式,所以我们可以计算到任意数n的质数的列表:
>>> from math import sqrt >>> n = 100 >>> sqrt_n = int(sqrt(n)) >>> no_primes = [j for i in range(2,sqrt_n) for j in range(i*2, n, i)]
如果我们去看no_primes的内容,就会发现一个问题。这里有很多重复的元素在这个列表里:
>>> no_primes [4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84, 90, 96, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99] >>>
这个无法容忍的问题将会在递推式构造集合(set comprehension)中被解决,我们将会在下一节中讲解
递推式构造集合(set comprehension)
递推式构造集合(set comprehension)与递推式构造列表(list comprehension)是很相似的,但是返回的是一个集合而不是列表。语法上,我们将采用花括号代替方括号去创建一个集合。递推式构造集合(set comprehension)是解决前一节中问题的正确方法。我们可以创建一个没有重复元素的非质数集合:
>>> from math import sqrt >>> n = 100 >>> sqrt_n = int(sqrt(n)) >>> no_primes = {j for i in range(2,sqrt_n) for j in range(i*2, n, i)} >>> no_primes {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99} >>> primes = {i for i in range(n) if i not in no_primes} >>> print(primes) {0, 1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97} >>>
利用递归函数来计算质数
下面的Python脚本使用递归函数来创建质数,他的功能完全可以去检查一个到n的平方根的多个质数:
from math import sqrt def primes(n): if n == 0: return [] elif n == 1: return [1] else: p = primes(int(sqrt(n))) no_p = {j for i in p for j in range(i*2, n, i)} p = {x for x in range(2, n) if x not in no_p} return p print(primes(40))
转载请注明出处
原文(英文):http://www.python-course.eu/list_comprehension.php
译文(中文):http://www.cnblogs.com/reanote/p/python_list_comprehension.html