第二周 内核进程调度
1.介绍
操作系统为了实现支持多任务处理的需要,一般都会支持多进程的机制,所以进程的的切换是内核当中一个非常重要的功能模块,内核几个功能模块主要有
-
处理器管理
-
内存管理
-
磁盘管理
-
输入输出管理
-
进程管理
本次实验主要是模拟了内核中的进程切换机制,以便加深对内核进程切换的理解。其中本次实验主要涉及以下三个代码文件。
mypcb.h
mymain.c
myiterrupt.c
2. 实验结果:
本实验想要实现的结果是通过时间片的方式对几个进程进行切换,其中每一个进程都由一个数字表示。以下列出实验结果截图(为了使实验结果更加清晰,调短了时间片的时间)
3. 流程图:
以下给出程序的运行流程图,然后根据流程图分析相关
4. 源代码分析
mypcb.h
4 * Kernel internal PCB types 5 * 6 * Copyright (C) 2013 Mengning 7 * 8 */ 9 10 #define MAX_TASK_NUM 4 11 #define KERNEL_STACK_SIZE 1024*8 12 13 /* CPU-specific state of this task */ 14 struct Thread { 15 unsigned long ip; 16 unsigned long sp; 17 }; 18 19 typedef struct PCB{ 20 int pid; 21 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ 22 char stack[KERNEL_STACK_SIZE]; 23 /* CPU-specific state of this task */ 24 struct Thread thread; 25 unsigned long task_entry; 26 struct PCB *next; 27 }tPCB; 28 29 void my_schedule(void)
mypcb.h文件中主要定义了PCB的数据结构,PCB(Process Control Block)在计算机当中用于存储一个进程当中的相关变量,由以上代码可以看出,地应的PCB中包含了了当前进程的
- 状态(state,)
- 堆栈(stack[KERNEL_STACK_SIZE]),
- esp,eip(thread),
- 程序入口(task_entry),
- 指向的下一个进程的指针(next)。
mymain.c
1 /* 2 * linux/mykernel/mymain.c 3 * 4 * Kernel internal my_start_kernel 5 * 6 * Copyright (C) 2013 Mengning 7 * 8 */ 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/ctype.h> 12 #include <linux/tty.h> 13 #include <linux/vmalloc.h> 14 15 16 #include "mypcb.h" 17 18 tPCB task[MAX_TASK_NUM]; 19 tPCB * my_current_task = NULL; 20 volatile int my_need_sched = 0; 21 22 void my_process(void); 23 24 25 void __init my_start_kernel(void) 26 { 27 int pid = 0; 28 int i; 29 /* Initialize process 0*/ 30 task[pid].pid = pid; 31 task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */ 32 task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process; 33 task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; 34 task[pid].next = &task[pid]; 35 /*fork more process */ 36 for(i=1;i<MAX_TASK_NUM;i++) 37 { 38 memcpy(&task[i],&task[0],sizeof(tPCB)); 39 task[i].pid = i; 40 task[i].state = -1; 41 task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1]; 42 task[i].next = task[i-1].next; 43 task[i-1].next = &task[i]; 44 } 45 /* start process 0 by task[0] */ 46 pid = 0; 47 my_current_task = &task[pid]; 48 asm volatile( 49 "movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */ 50 "pushl %1\n\t" /* push ebp */ 51 "pushl %0\n\t" /* push task[pid].thread.ip */ 52 "ret\n\t" /* pop task[pid].thread.ip to eip */ 53 "popl %%ebp\n\t" 54 : 55 : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) /* input c or d mean %ecx/%edx*/ 56 ); 57 } 58 void my_process(void) 59 { 60 int i = 0; 61 while(1) 62 { 63 i++; 64 if(i%10000000 == 0) 65 { 66 printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid); 67 if(my_need_sched == 1) 68 { 69 my_need_sched = 0; 70 my_schedule(); 71 } 72 printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid); 73 } 74 } 75 }
mymain.c文件主要的主要是初始化相关进程。并引导最初的进程运行。首先
void __init my_start_kernel(void)
_init是一个宏定义,其宏定义如下,主要实现的功能是将这段代码放在text段中。
#define __init __section__(".init.text")
29-35行代码主要完成的对process0(最初进程)的初始化工作。然后利用for循环对已经初始化好的process0进行复制,快速的初始化好其它进程的相关信息。
这里注意process0的task_entry设置为my_process,即process0将调用my_process函数。
48-55行内置汇编主要是启动process0 其中首先保存esp eip然后在52行ret指令时进入my_process函数进行执行。
my_process函数主要作用是打印当前进程的信息。并且通过判断 my_need_sched 的值来决定是否进行进程切换,即调用my_schedule();而my_need_sched 这个变量的值则主要通过时间中断来实现改变,见myinterrupt.c代码
myinterrupt.c
1 /* 2 * linux/mykernel/myinterrupt.c 3 * 4 * Kernel internal my_timer_handler 5 * 6 * Copyright (C) 2013 Mengning 7 * 8 */ 9 #include <linux/types.h> 10 #include <linux/string.h> 11 #include <linux/ctype.h> 12 #include <linux/tty.h> 13 #include <linux/vmalloc.h> 14 15 #include "mypcb.h" 16 17 extern tPCB task[MAX_TASK_NUM]; 18 extern tPCB * my_current_task; 19 extern volatile int my_need_sched; 20 volatile int time_count = 0; 21 22 /* 23 * Called by timer interrupt. 24 * it runs in the name of current running process, 25 * so it use kernel stack of current running process 26 */ 27 void my_timer_handler(void) 28 { 29 #if 1 30 if(time_count%1000 == 0 && my_need_sched != 1) 31 { 32 printk(KERN_NOTICE ">>>my_timer_handler here<<<\n"); 33 my_need_sched = 1; 34 } 35 time_count ++ ; 36 #endif 37 return; 38 } 39 40 void my_schedule(void) 41 { 42 tPCB * next; 43 tPCB * prev; 44 45 if(my_current_task == NULL 46 || my_current_task->next == NULL) 47 { 48 return; 49 } 50 printk(KERN_NOTICE ">>>my_schedule<<<\n"); 51 /* schedule */ 52 next = my_current_task->next; 53 prev = my_current_task; 54 if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */ 55 { 56 /* switch to next process */ 57 asm volatile( 58 "pushl %%ebp\n\t" /* save ebp */ 59 "movl %%esp,%0\n\t" /* save esp */ 60 "movl %2,%%esp\n\t" /* restore esp */ 61 "movl $1f,%1\n\t" /* save eip */ 62 "pushl %3\n\t" 63 "ret\n\t" /* restore eip */ 64 "1:\t" /* next process start here */ 65 "popl %%ebp\n\t" 66 : "=m" (prev->thread.sp),"=m" (prev->thread.ip) 67 : "m" (next->thread.sp),"m" (next->thread.ip) 68 ); 69 my_current_task = next; 70 printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); 71 } 72 else 73 { 74 next->state = 0; 75 my_current_task = next; 76 printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid); 77 /* switch to new process */ 78 asm volatile( 79 "pushl %%ebp\n\t" /* save ebp */ 80 "movl %%esp,%0\n\t" /* save esp */ 81 "movl %2,%%esp\n\t" /* restore esp */ 82 "movl %2,%%ebp\n\t" /* restore ebp */ 83 "movl $1f,%1\n\t" /* save eip */ 84 "pushl %3\n\t" 85 "ret\n\t" /* restore eip */ 86 : "=m" (prev->thread.sp),"=m" (prev->thread.ip) 87 : "m" (next->thread.sp),"m" (next->thread.ip) 88 ); 89 } 90 return; 91 }
my_timer_handler函数主要作用是修改my_need_sched从而实现进程的切换,这里利用time_count进行计数的方式控制触发进程切换条件的时间。可以修改1000实现更大或者更小的进程切换时间
my_schedule则是控制进程切换的函数。首先对要切换的进程进行判断,是否是新进程,若是是runnable则进入if语句中。79-86行主要作用是进程的切换。这里先将esp,ebp压栈(即将当前进程的栈顶,栈底 压栈)。然后将将要调度的进程的sp赋值esp寄存器当中。然后保存当前eip值。在63当中进入下一个进程当中。这里注意$1f指的是65代码的地址,即标号1:的下一行。
这样保存的意义就是让进程返回时接着下一行代码执行。
如果下一个将要调度的进程是个新进程,那么就会进入到else当中,其中与之前的代码很相似,不同在于由于是新进程,ebp,esp没有值,这里要构造相应的ebp,esp。见81, 82行。
5. 总结
通过实验加深了对内核进程切换的理解,这里进程切换主要借鉴了函数调用的相关思想,将每个进程当作一个函数,在进入进程前先保存当前进程的相关参数,以便下一次调用进程时恢复现场使用。操作系统通过这种方式实现进程的快速切换,虽然一个CPU(单核)只能同时运行一个进程,但是只要时间片设置的足够小,通过这种方式快速切换各个进程,可以实现多任务处理的作用,从而满足日常生活中人们的各种多线作业的需求。