ACboy needs your help
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4912 Accepted Submission(s): 2651
Problem Description
ACboy has N courses this term, and he plans to spend at most M days on study.Of course,the profit he will gain from different course depending on the days he spend on it.How to arrange the M days for the N courses to maximize the profit?
Input
The input consists of multiple data sets. A data set starts with a line containing two positive integers N and M, N is the number of courses, M is the days ACboy has.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.
Next follow a matrix A[i][j], (1<=i<=N<=100,1<=j<=M<=100).A[i][j] indicates if ACboy spend j days on ith course he will get profit of value A[i][j].
N = 0 and M = 0 ends the input.
Output
For each data set, your program should output a line which contains the number of the max profit ACboy will gain.
Sample Input
2 2
1 2
1 3
2 2
2 1
2 1
2 3
3 2 1
3 2 1
0 0
Sample Output
3
4
6
Source
题目意思:
有n个课程,每个课程在不同天数得到不同价值,总共m天,问m天之内得到最大的价值。
有n个课程,每个课程在不同天数得到不同价值,总共m天,问m天之内得到最大的价值。
思路:
每个课程若在i天完成,就不能在j天完成。以n个课程为组,天数为体积,价值为价值,即得到分组背包的模型。
每个课程若在i天完成,就不能在j天完成。以n个课程为组,天数为体积,价值为价值,即得到分组背包的模型。
dp[i][j]=max(dp[i-1][j],dp[i-1][j-v[k]]+w[k])//dp[i][j]表示前i组已占用j体积时最大价值。
代码:
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <iostream> 5 #include <vector> 6 #include <queue> 7 #include <cmath> 8 #include <set> 9 using namespace std; 10 11 #define N 105 12 13 int max(int x,int y){return x>y?x:y;} 14 int min(int x,int y){return x<y?x:y;} 15 int abs(int x,int y){return x<0?-x:x;} 16 17 18 int a[N][N]; 19 int n, m; 20 int dp[N]; 21 22 main() 23 { 24 int i, j, k; 25 while(scanf("%d %d",&n,&m)==2){ 26 if(!n&&!m) break; 27 for(i=1;i<=n;i++){ 28 for(j=1;j<=m;j++) 29 scanf("%d",&a[i][j]); 30 } 31 memset(dp,0,sizeof(dp)); 32 for(i=1;i<=n;i++){ 33 for(j=m;j>=0;j--){ 34 for(k=1;k<=j;k++){ 35 dp[j]=max(dp[j],dp[j-k]+a[i][k]); 36 } 37 } 38 } 39 printf("%d\n",dp[m]); 40 } 41 }