机器学习(Andrew Ng)作业代码(Exercise 5~6)

Programming Exercise 5: Regularized Linear Regression and Bias v.s. Variance

linearRegCostFunction

与Ex4类似,没什么好说的

function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
%LINEARREGCOSTFUNCTION Compute cost and gradient for regularized linear 
%regression with multiple variables
%   [J, grad] = LINEARREGCOSTFUNCTION(X, y, theta, lambda) computes the 
%   cost of using theta as the parameter for linear regression to fit the 
%   data points in X and y. Returns the cost in J and the gradient in grad

% Initialize some useful values
m = length(y); % number of training examples

% You need to return the following variables correctly 
J = 0;
grad = zeros(size(theta));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the cost and gradient of regularized linear 
%               regression for a particular choice of theta.
%
%               You should set J to the cost and grad to the gradient.
%
    theta2=theta;
    theta2(1)=0;
    J=((X*theta-y)'*(X*theta-y))/(2*m)+lambda*(theta2'*theta2)/(2*m);
    grad=(X'*(X*theta-y))/m+(lambda/m)*theta2;
% =========================================================================

grad = grad(:);

end

learningCurve

绘制出不同训练样本数目下,训练集误差和验证集误差

注意在计算训练样本数目为size的训练集误差时,只需要计算前size个训练集的样本的误差即可。

function [error_train, error_val] = ...
    learningCurve(X, y, Xval, yval, lambda)
%LEARNINGCURVE Generates the train and cross validation set errors needed 
%to plot a learning curve
%   [error_train, error_val] = ...
%       LEARNINGCURVE(X, y, Xval, yval, lambda) returns the train and
%       cross validation set errors for a learning curve. In particular, 
%       it returns two vectors of the same length - error_train and 
%       error_val. Then, error_train(i) contains the training error for
%       i examples (and similarly for error_val(i)).
%
%   In this function, you will compute the train and test errors for
%   dataset sizes from 1 up to m. In practice, when working with larger
%   datasets, you might want to do this in larger intervals.
%

% Number of training examples
m = size(X, 1);

% You need to return these values correctly
error_train = zeros(m, 1);
error_val   = zeros(m, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in 
%               error_train and the cross validation errors in error_val. 
%               i.e., error_train(i) and 
%               error_val(i) should give you the errors
%               obtained after training on i examples.
%
% Note: You should evaluate the training error on the first i training
%       examples (i.e., X(1:i, :) and y(1:i)).
%
%       For the cross-validation error, you should instead evaluate on
%       the _entire_ cross validation set (Xval and yval).
%
% Note: If you are using your cost function (linearRegCostFunction)
%       to compute the training and cross validation error, you should 
%       call the function with the lambda argument set to 0. 
%       Do note that you will still need to use lambda when running
%       the training to obtain the theta parameters.
%
% Hint: You can loop over the examples with the following:
%
%       for i = 1:m
%           % Compute train/cross validation errors using training examples 
%           % X(1:i, :) and y(1:i), storing the result in 
%           % error_train(i) and error_val(i)
%           ....
%           
%       end
%

% ---------------------- Sample Solution ----------------------
    
% -------------------------------------------------------------
    for sample_size=1:m
        [theta] = trainLinearReg([ones(sample_size, 1),X(1:sample_size,:)], y(1:sample_size), lambda);
        [error_train(sample_size),~]=linearRegCostFunction([ones(sample_size,1),X(1:sample_size,:)],y(1:sample_size),theta,0);
        [error_val(sample_size),~]=linearRegCostFunction([ones(size(Xval,1),1),Xval],yval,theta,0);
    end
% =========================================================================

end

polyFeatures

将样本一维的特征x映射到p维的特征\((x,x^2,\cdots,x^p)\),从而将线性回归问题转化为多项式回归问题,用高阶的多项式函数拟合数据。

function [X_poly] = polyFeatures(X, p)
%POLYFEATURES Maps X (1D vector) into the p-th power
%   [X_poly] = POLYFEATURES(X, p) takes a data matrix X (size m x 1) and
%   maps each example into its polynomial features where
%   X_poly(i, :) = [X(i) X(i).^2 X(i).^3 ...  X(i).^p];
%


% You need to return the following variables correctly.
X_poly = zeros(numel(X), p);

% ====================== YOUR CODE HERE ======================
% Instructions: Given a vector X, return a matrix X_poly where the p-th 
%               column of X contains the values of X to the p-th power.
%
% 
    for pw=1:p
        X_poly(:,pw)=X.^pw;
    end
% =========================================================================

end

validationCurve

绘制在不同\(\lambda\)取值下,线性回归模型在训练集和验证集上的误差。这里输入样本被映射到八阶特征\((x,x^2,\cdots,x^8)\)

function [lambda_vec, error_train, error_val] = ...
    validationCurve(X, y, Xval, yval)
%VALIDATIONCURVE Generate the train and validation errors needed to
%plot a validation curve that we can use to select lambda
%   [lambda_vec, error_train, error_val] = ...
%       VALIDATIONCURVE(X, y, Xval, yval) returns the train
%       and validation errors (in error_train, error_val)
%       for different values of lambda. You are given the training set (X,
%       y) and validation set (Xval, yval).
%

% Selected values of lambda (you should not change this)
lambda_vec = [0 0.001 0.003 0.01 0.03 0.1 0.3 1 3 10]';

% You need to return these variables correctly.
error_train = zeros(length(lambda_vec), 1);
error_val = zeros(length(lambda_vec), 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return training errors in 
%               error_train and the validation errors in error_val. The 
%               vector lambda_vec contains the different lambda parameters 
%               to use for each calculation of the errors, i.e, 
%               error_train(i), and error_val(i) should give 
%               you the errors obtained after training with 
%               lambda = lambda_vec(i)
%
% Note: You can loop over lambda_vec with the following:
%
%       for i = 1:length(lambda_vec)
%           lambda = lambda_vec(i);
%           % Compute train / val errors when training linear 
%           % regression with regularization parameter lambda
%           % You should store the result in error_train(i)
%           % and error_val(i)
%           ....
%           
%       end
%
%
    m=size(X,1);
    mval=size(Xval,1);
    for i=1:size(lambda_vec)
        lambda=lambda_vec(i);
        [theta] = trainLinearReg([ones(m, 1),X], y, lambda);
        [error_train(i),~]=linearRegCostFunction([ones(m,1),X],y,theta,0);
        [error_val(i),~]=linearRegCostFunction([ones(mval,1),Xval],yval,theta,0);
    end
% =========================================================================

end

最终测试结果

Fig 1.不同训练样本数目下,线性回归模型(使用原始输入数据的特征)在训练集和测试集上的误差。

Fig 2.\(\lambda=1\)和100时,线性回归模型(特征映射到八阶)拟合出的曲线,以及在训练集和测试集上的误差。

Fig 3.线性回归模型(特征映射到八阶)在不同\(\lambda\)取值下在训练集和测试集上的误差。

Programming Exercise 6: Support Vector Machines

实现带高斯核的SVM

gaussianKernel

实现一个函数,给出两个向量\(x_1,x_2\),高斯核参数\(\sigma\),返回高斯核的相似度量(similarity metric):

\[f=\exp(-\frac {\|x1-x2\|^2}{2\sigma^2}) \]

function sim = gaussianKernel(x1, x2, sigma)
%RBFKERNEL returns a radial basis function kernel between x1 and x2
%   sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
%   and returns the value in sim

% Ensure that x1 and x2 are column vectors
x1 = x1(:); x2 = x2(:);

% You need to return the following variables correctly.
sim = 0;

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the similarity between x1
%               and x2 computed using a Gaussian kernel with bandwidth
%               sigma
%
%
    sim=exp(-(x1-x2)'*(x1-x2)/(2*sigma*sigma));
% =============================================================
    
end

dataset3Params

给出训练集\((X,y)\),交叉验证集\((Xval,yval)\),在[0.01,0.03,0.1,0.3,1,3,10,30]中选取最合适的SVM参数\(\sigma,C\),使得用训练集训练好的SVM在交叉验证集中的错误率最低

function [C, sigma] = dataset3Params(X, y, Xval, yval)
%EX6PARAMS returns your choice of C and sigma for Part 3 of the exercise
%where you select the optimal (C, sigma) learning parameters to use for SVM
%with RBF kernel
%   [C, sigma] = EX6PARAMS(X, y, Xval, yval) returns your choice of C and 
%   sigma. You should complete this function to return the optimal C and 
%   sigma based on a cross-validation set.
%

% You need to return the following variables correctly.
C = 1;
sigma = 0.3;

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return the optimal C and sigma
%               learning parameters found using the cross validation set.
%               You can use svmPredict to predict the labels on the cross
%               validation set. For example, 
%                   predictions = svmPredict(model, Xval);
%               will return the predictions on the cross validation set.
%
%  Note: You can compute the prediction error using 
%        mean(double(predictions ~= yval))
%
    Clist=[0.01,0.03,0.1,0.3,1,3,10,30];
    sigmalist=[0.01,0.03,0.1,0.3,1,3,10,30];
    
    minerror=1e18;
    
    for i=1:length(Clist)
        for j=1:length(sigmalist)
            Cnow=Clist(i);
            sigmanow=sigmalist(j);
            % Train the SVM
            model= svmTrain(X, y, Cnow, @(x1, x2) gaussianKernel(x1, x2, sigmanow));
            p=svmPredict(model,Xval); %The predictions of SVM model
            error=mean(double(p~=yval));
            if(error<minerror)
                minerror=error;
                C=Cnow,sigma=sigmanow;
            end
        end
    end
% =========================================================================

end

最终测试结果

Fig 1.c=1,c=100时使用不带核函数(线性核)的SVM划分同一组数据的决策边界,可见c=100时虽然没有数据被错误分类,但是决策边界与正、负样本的距离太近,发生了过拟合

Fig 2.c=1时用高斯核的SVM划分第二组数据的决策边界

Fig 3.用自动选取的参数\(c,\sigma\),高斯核的SVM划分第三组数据的决策边界

用SVM实现垃圾邮件过滤器

processEmail

给出一封邮件的内容,将其预处理,提取出其中在词表里的所有词

作业代码已经实现了提取邮件内容中每个关键词str的部分,对于每个str,只需用strcmp与词表里的所有词一一比对即可。

function word_indices = processEmail(email_contents)
%PROCESSEMAIL preprocesses a the body of an email and
%returns a list of word_indices 
%   word_indices = PROCESSEMAIL(email_contents) preprocesses 
%   the body of an email and returns a list of indices of the 
%   words contained in the email. 
%

% Load Vocabulary
vocabList = getVocabList();

% Init return value
word_indices = [];

% ========================== Preprocess Email ===========================

% Find the Headers ( \n\n and remove )
% Uncomment the following lines if you are working with raw emails with the
% full headers

% hdrstart = strfind(email_contents, ([char(10) char(10)]));
% email_contents = email_contents(hdrstart(1):end);

% Lower case
email_contents = lower(email_contents);

% Strip all HTML
% Looks for any expression that starts with < and ends with > and replace
% and does not have any < or > in the tag it with a space
email_contents = regexprep(email_contents, '<[^<>]+>', ' ');

% Handle Numbers
% Look for one or more characters between 0-9
email_contents = regexprep(email_contents, '[0-9]+', 'number');

% Handle URLS
% Look for strings starting with http:// or https://
email_contents = regexprep(email_contents, ...
                           '(http|https)://[^\s]*', 'httpaddr');

% Handle Email Addresses
% Look for strings with @ in the middle
email_contents = regexprep(email_contents, '[^\s]+@[^\s]+', 'emailaddr');

% Handle $ sign
email_contents = regexprep(email_contents, '[$]+', 'dollar');


% ========================== Tokenize Email ===========================

% Output the email to screen as well
fprintf('\n==== Processed Email ====\n\n');

% Process file
l = 0;

while ~isempty(email_contents)

    % Tokenize and also get rid of any punctuation
    [str, email_contents] = ...
       strtok(email_contents, ...
              [' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
   
    % Remove any non alphanumeric characters
    str = regexprep(str, '[^a-zA-Z0-9]', '');

    % Stem the word 
    % (the porterStemmer sometimes has issues, so we use a try catch block)
    try str = porterStemmer(strtrim(str)); 
    catch str = ''; continue;
    end;

    % Skip the word if it is too short
    if length(str) < 1
       continue;
    end

    % Look up the word in the dictionary and add to word_indices if
    % found
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to add the index of str to
    %               word_indices if it is in the vocabulary. At this point
    %               of the code, you have a stemmed word from the email in
    %               the variable str. You should look up str in the
    %               vocabulary list (vocabList). If a match exists, you
    %               should add the index of the word to the word_indices
    %               vector. Concretely, if str = 'action', then you should
    %               look up the vocabulary list to find where in vocabList
    %               'action' appears. For example, if vocabList{18} =
    %               'action', then, you should add 18 to the word_indices 
    %               vector (e.g., word_indices = [word_indices ; 18]; ).
    % 
    % Note: vocabList{idx} returns a the word with index idx in the
    %       vocabulary list.
    % 
    % Note: You can use strcmp(str1, str2) to compare two strings (str1 and
    %       str2). It will return 1 only if the two strings are equivalent.
    %
    for i=1:length(vocabList)
        if(strcmp(str,vocabList(i)))
            word_indices=[word_indices;i];
            break;
        end
    end
    % =============================================================

    % Print to screen, ensuring that the output lines are not too long
    if (l + length(str) + 1) > 78
        fprintf('\n');
        l = 0;
    end
    fprintf('%s ', str);
    l = l + length(str) + 1;

end

% Print footer
fprintf('\n\n=========================\n');

end

emailFeatures

processEmail对邮件原始内容提取出的词表关键词,转换为一个向量\(x\)\(x(i)=1\)表示词表里第i个词在邮件中出现了,为0表示词表里第i个词没有出现

很容易实现,具体看代码

function x = emailFeatures(word_indices)
%EMAILFEATURES takes in a word_indices vector and produces a feature vector
%from the word indices
%   x = EMAILFEATURES(word_indices) takes in a word_indices vector and 
%   produces a feature vector from the word indices. 

% Total number of words in the dictionary
n = 1899;

% You need to return the following variables correctly.
x = zeros(n, 1);

% ====================== YOUR CODE HERE ======================
% Instructions: Fill in this function to return a feature vector for the
%               given email (word_indices). To help make it easier to 
%               process the emails, we have have already pre-processed each
%               email and converted each word in the email into an index in
%               a fixed dictionary (of 1899 words). The variable
%               word_indices contains the list of indices of the words
%               which occur in one email.
% 
%               Concretely, if an email has the text:
%
%                  The quick brown fox jumped over the lazy dog.
%
%               Then, the word_indices vector for this text might look 
%               like:
%               
%                   60  100   33   44   10     53  60  58   5
%
%               where, we have mapped each word onto a number, for example:
%
%                   the   -- 60
%                   quick -- 100
%                   ...
%
%              (note: the above numbers are just an example and are not the
%               actual mappings).
%
%              Your task is take one such word_indices vector and construct
%              a binary feature vector that indicates whether a particular
%              word occurs in the email. That is, x(i) = 1 when word i
%              is present in the email. Concretely, if the word 'the' (say,
%              index 60) appears in the email, then x(60) = 1. The feature
%              vector should look like:
%
%              x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
%
%
    for i=1:length(word_indices)
        x(word_indices(i))=1;
    end
% =========================================================================
    

end

最终测试结果

posted @ 2018-07-08 19:54  YongkangZhang  阅读(443)  评论(0编辑  收藏  举报