详情请见:
https://blog.csdn.net/qian99/article/details/79008053
https://www.cnblogs.com/touch-skyer/p/9150039.html
1. 全连接层
关于全连接中bias(偏置)的计算,一些资料里参数的数量是1,但是在用的深度学习框架中(tensorflow和pytorch)基本都是和输出层的元素的数量相同。不过这一点其实影响不大的,因为bias所占的参数量的比重很小,所以无论用哪种计算方法最终的结果基本没什么差别。
2. 卷积层
3. 池化层
池化层会改变输入输出,但不会有参数
4. 举例
卷积示意图:
1个filter:
6个filter:
Max Pooling示意图: