自用板子

最短路

打包:https://www.cnblogs.com/phemiku/p/11537316.html

 

 快速幂和快速乘

首先,快速幂的目的就是做到快速求幂,假设我们要求a^b,按照朴素算法就是把a连乘b次,这样一来时间复杂度是O(b)也即是O(n)级别,快速幂能做到O(logn),快了好多好多。它的原理如下:

  假设我们要求a^b,那么其实b是可以拆成二进制的,该二进制数第i位的权为2^(i-1),例如当b==11时  a11=a(2^0+2^1+2^3)    

  11的二进制是1011,11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1,因此,我们将a¹¹转化为算 a2^0*a2^1*a2^3,也就是a1*a2*a8
,看出来快的多了吧原来算11次,现在算三次,但是这三项貌似不好求的样子....不急,下面会有详细解释。                                                                                   由于是二进制,很自然地想到用位运算这个强大的工具:&和>>    
&运算通常用于二进制取位操作,例如一个数 & 1 的结果就是取二进制的最末位。还可以判断奇偶x&1==0为偶,x&1==1为奇。
>>运算比较单纯,二进制去掉最后一位。
 
                                               from CXCXCXC
#include<bits/stdc++.h>
using namespace std;
#define int long long    //这样就不用每次开long long了
const int N = 100050;
inline int read() {     //快读
    char c = getchar();
    int x = 0, f = 1;
    while(c < '0' || c > '9') {
        if(c == '-') f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
inline int qpow(int a,int b,int mod){  //快速幂
    for(int c = 1; ;a = a * a % mod){
        if(b & 1)c = c * a % mod;
        if(!(b >>= 1))return c;
    }
}

inline int qmul(int a,int b,int mod){   //快速乘
    for(int c = 0; ;a = (a << 1) % mod){
        if(b & 1)c = (c + a) % mod;
        if(!(b >>= 1))return c;
    }
}

int n,m,a,b,q,c,d,r;
signed t;
signed main()
{
    t = read();
   for(int i = 1;i <= t; i++){
     a = read();b = read();q = read();
     c = read();d = read();r = read();
     cout << qpow(a,b,q) << " "<< qmul(c,d,r) << endl ;
   }
   
}
View Code

 

 二分

跳石头地址:https://www.luogu.org/problem/P2678

 

#include <bits/stdc++.h>

const int N = 50050;
int n, d[N], m, len, ans;

inline bool check(int mid) {
    int sum = 0, now = 0;
    for (int i = 1; i <= n; i++) {
        if (d[i] - d[now] < mid)
            sum++;
        else
            now = i;
    }
    if (sum > m)
        return 0;
    else
        return 1;
}

int main() {
    std::cin >> len >> n >> m;
    for (int i = 1; i <= n; i++) std::cin >> d[i];
    if (!n)
        std::cout << len;
    else {
        int l = 1, r = len;
        while (l < r) {
            int mid = l + (r - l) / 2;
            if (check(mid)) {
                l = mid + 1;
                ans = mid;
            } else
                r = mid;
        }
        std::cout << ans;
    }
    return 0;
}
跳石头(二分答案)

 

 矩阵快速幂

 https://www.luogu.org/problem/P3390

#include<iostream>
#include<cstring>
#define mod 1000000007
#define ll long long
using namespace std;
struct Mat{
    ll m[101][101];
};
Mat a,e;
ll n,p;

Mat Mul(Mat x,Mat y) //矩阵乘 
{
    Mat c;
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
        c.m[i][j]=0;
        
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
        for(int k=1;k<=n;k++)
          c.m[i][j] = c.m[i][j] % mod + x.m[i][k] * y.m[k][j] % mod;
    return c; 
}

Mat pow(Mat x,ll y) //矩阵快速幂 
{
    Mat ans=e;
    while(y) {
        if(y&1)
         ans=Mul(ans,x);  
        x=Mul(x,x);
        y>>=1;
    }
    return ans;
}

int main()
{
    cin>>n>>p;
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
        cin>>a.m[i][j];
   
    for(int i=1;i<=n;i++)  e.m[i][i]=1; //构造单位矩阵   
    Mat ans = pow(a,p);
    for(int i=1;i<=n;i++) {
        for(int j=1;j<=n;j++)
          cout << ans.m[i][j] % mod << " ";
        cout << endl;
    }  
    return 0;
}
View Code

 

小根堆

https://www.luogu.org/problem/P3378

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std;
int main(){
  priority_queue< int,vector<int>, greater<int> >q;
  int n,m,k,p,x,y;
  scanf("%d",&n);
  for(register  int i = 1; i <= n; ++i){
    scanf("%d",&x);
    if(x==1){
      scanf("%d",&y);
      q.push(y);
    }
    else if(x==2){
      printf("%d",q.top());
    }
    else {
      q.pop();
    }
  }
  return 0;
}
小根堆

 

 

 

 高精度

 高精度减法

#include<bits/stdc++.h>
using namespace std;
const int N= 10500;
int na[N],nb[N],nc[N];
bool bj;
string a,b; 
int main()
{ 
  cin>>a>>b;
  if(a.size()<b.size()||(a.size()==b.size()&&a<b)){ //我果然年少又无知…string可以直接比较大小的…(ASCII码 
      bj=1;
      swap(a,b);
  }
for(int i=a.size();i>=1;i--)na[i]=a[a.size()-i]-'0';
for(int i=b.size();i>=1;i--)nb[i]=b[b.size()-i]-'0';
  
  int n=max(a.size(),b.size());
  for(int i = 1; i <= n; i ++){
        if(na[i] < nb[i]){
            na[i + 1] --;
            na[i] += 10;
        }
        nc[i] = na[i] - nb[i];
    }
  while(nc[n]==0)n--;
  if(bj)cout<<"-";
  for(int i=n;i>0;i--)cout<<nc[i];
  if(n<1)cout<<"0";

}
View Code

 

高精度乘法

#include<iostream>
#include<cstring>
#define maxn 100000+10
using namespace std;
int na[maxn],nb[maxn],nc[maxn];
char a[maxn],b[maxn];
void mul()
{
    int i,j,lena,lenb;
    memset(na,0,sizeof(na));
    memset(nb,0,sizeof(nb));
    memset(nc,0,sizeof(nc));
    lena=strlen(a);
    lenb=strlen(b);
    for(i=0;i<lena;i++) na[i]=a[lena-i-1]-'0';
    for(i=0;i<lenb;i++) nb[i]=b[lenb-i-1]-'0';
    for(i=0;i<lena;i++)
      for(j=0;j<lenb;j++) nc[i+j]+=na[i]*nb[j];
    int max=lena+lenb;
    for(i=0;i<max;i++) nc[i+1]+=nc[i]/10,nc[i]%=10;
    while(!nc[--max]);
    max++;
    for(i=0;i<max;i++) a[i]=nc[max-i-1]+'0';
    a[max]='\0';
}
int main()
{
    while(cin>>a>>b)
    {
        mul();
        puts(a);
    }
    return 0;
}
View Code

 

 欧几里得(辗转相除)

ll gcd(ll a, ll b) { return !b ? a : gcd(b, a%b); }

扩展欧几里得

青蛙的约会:https://www.luogu.org/problem/P1516

 

int exgcd(int a,int b,int &x,int &y){
    if(b == 0){
        x = 1, y = 0;
        return a; 
    } 
    int ret = exgcd(b, a%b, x, y);
    int tmp = x;
    x = y;
    y = tmp - a/b*y;
    return ret;
}

 扩欧用来做什么? [   同余方程    ]

( a≡1(mod b) 的情况)

#include <cstdio>
#include <algorithm>
#include<iostream>
#define MAXN 1005
typedef long long ll;
int a, b, x, y, k;
void exgcd(int a,int b){
    if(!b){
        x = 1; y = 0;
        return;
    }
    exgcd(b,a%b);
    k = x; x = y;
    y = k - a/b * y;
    return;
}
int main() {
    scanf("%d%d",&a,&b);
    exgcd(a,b);
    std::cout << (x + b) % b;
    return 0;
}
View Code

 


左偏树

(P3377 【模板】左偏树(可并堆))

 

 

 差分、前缀和

·区间修改后询问 http://oj.ipoweru.cn/problem/24200

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6 + 9;
typedef long long lld;
#define fr(i,n)  for(int i = 1; i <= n; i++)

int n, m, q, l, r, od;
lld a[N], d[N], s[N];

int main() {
    scanf("%d%d%d", &n, &m, &q);
    fr(i,n) scanf("%lld", &a[i]);
    fr(i,n) d[i] = a[i] - a[i - 1];
    fr(i,m) {
        scanf("%d%d%d", &l, &r, &od);
        d[r + 1] -= od;
        d[l] += od;
    }
    fr(i,n) a[i] = a[i - 1] + d[i];
    fr(i,n) s[i] = s[i - 1] + a[i];
    fr(i,q) {
        scanf("%d%d", &l, &r);
        printf("%lld\n", s[r] - s[l - 1]);
    }
    return 0;
}

 线段树

https://www.luogu.org/problem/P3372

 

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5 + 5;
typedef long long ll;
int n,m;
ll sum[N << 2],tag[N << 2];

//传上去(用儿子更新自己 ) 
void pushup(int u) { sum[u] = sum[u << 1] + sum[u << 1 | 1]; }

void buildTree(int u, int uL, int uR)
{
    if(uL == uR) {
        scanf("%lld",&sum[u]);
        return ;
    }
    int mid = (uL + uR) >> 1;
    buildTree(u << 1, uL,mid);
    buildTree(u << 1 | 1, mid + 1,uR);
    pushup(u);
}

void update(int u, int uL, int uR, int mx)
{
    sum[u] += (ll)(uR - uL + 1) * mx;
    tag[u] += mx;  //lazy tag储存的是每个叶节点的修改量,不是所有 
}

void pushdown(int u, int uL, int uR)
{
    if(tag[u]){
        int mid = (uL + uR) >> 1;
        update(u << 1, uL, mid, tag[u]);
        update(u << 1|1, mid + 1,uR, tag[u]);
        tag[u] = 0; //!!记得清空 
    }
}

void modify(int u, int uL, int uR, int mL, int mR, int mx)
{   
    if(mL <= uL && mR >= uR) {//完全覆盖 
        update(u,uL,uR,mx);
        return;
    }
    //暴 躁 y z 在 线 画 图 
    pushdown(u,uL,uR);
    int mid = (uL + uR) >> 1;
    if(mL <= mid) modify(u << 1, uL, mid, mL, mR, mx); 
    if(mid < mR) modify(u << 1 | 1, mid + 1, uR, mL,mR, mx);
    //"更新结束后传回答案"
    pushup(u); 
}

ll query(int u, int uL, int uR, int mL, int mR)
{
    if(mL <= uL && mR >= uR)  return sum[u];
    pushdown(u, uL, uR);
    int mid = (uL + uR) >> 1;
    ll ans = 0;
    if(mL <= mid) ans += query(u << 1, uL, mid, mL, mR); 
    if(mid < mR) ans += query(u << 1 | 1, mid + 1, uR, mL, mR);
    return ans;
}
int main()
{
  scanf("%d%d",&n,&m);
  buildTree(1,1,n); 
  while(m--){
      int opt,l,r,x;
      scanf("%d%d%d",&opt,&l,&r); 
      if(opt == 1){
          scanf("%d",&x);
          modify(1,1,n,l,r,x);  //添加操作 
      }
    else printf("%lld\n",query(1,1,n,l,r)); // 询问操作 
  }
  return 0;
}
View Code

 

 

 

#include <bits/stdc++.h>
using namespace std;
typedef long long lld;
const int N = 2e5 + 9;
int n, m;
// sum存区间和(该线段树维护的内容),tag是懒惰标记,注意空间开4倍
lld sum[N << 2], tag[N << 2];

// 从子节点更新当前节点维护的内容,因为是维护区间和,所以直接取子节点的值相加
// 也就是把左右儿子加给他自己 
void pushup(int u) { sum[u] = sum[u << 1] + sum[u << 1 | 1]; } 


void buildTree(int u, int uL, int uR) {
    if (uL == uR) {  // 如果这个节点为叶结点,处理完后应当直接返回,否则递归两个子节点
        scanf("%lld", &sum[u]);
        // 也可以先读入到另一个数组a里,这里改写为 sum[u]=a[l]; 也是对的
        return;
    }
    int mid = uL + uR >> 1;  // mid计算的是区间中点,以便得到子节点的区间范围
    buildTree(u << 1, uL, mid);
    buildTree(u << 1 | 1, mid + 1, uR);  // 注意要mid+1,这样区间才不会重叠
    pushup(u);
}

// 更新当前节点维护的内容
void update(int u, int uL, int uR, int mx) {
    sum[u] += (lld)(uR - uL + 1) * mx;  // 区间统一+mx,因此这个节点的区间和应该再乘以它对应的区间长度
    // 要注意这里的类型强转,如果不转这个中间结果可能爆int
    tag[u] += mx;  // 懒惰标记不必再乘
}

// 下传Lazy Tag
void pushdown(int u, int uL, int uR) {
    if (tag[u]) {  // 如果tag值为0就不必传
        int mid = uL + uR >> 1;
        update(u << 1, uL, mid, tag[u]);
        update(u << 1 | 1, mid + 1, uR, tag[u]);
        tag[u] = 0;  // 注意传过以后tag就归零了
    }
}

// mL与mR是操作区间范围,mx是操作参数
void modify(int u, int uL, int uR, int mL, int mR, int mx) {
    // 如果这个节点的区间被完全覆盖,那么直接更新它即可
    if (mL <= uL && uR <= mR) {
        update(u, uL, uR, mx);
        return;
    }
    // 否则要去更新它的子节点,更新之前先下传Lazy Tag
    pushdown(u, uL, uR);
    // 具体地看是否要更新左子节点和右子节点(有可能均要更新)
    int mid = uL + uR >> 1;
    if (mL <= mid)
        modify(u << 1, uL, mid, mL, mR, mx);
    if (mid < mR)
        modify(u << 1 | 1, mid + 1, uR, mL, mR, mx);
    // 更新结束后,再从子节点回传答案
    pushup(u);
}

lld query(int u, int uL, int uR, int mL, int mR) {
    // 如果这个节点的区间被完全覆盖,那么直接返回它存储的区间和即可
    if (mL <= uL && uR <= mR)
        return sum[u];
    // 否则去看它的子节点,先下传Lazy Tag
    pushdown(u, uL, uR);
    // 具体地看询问是否要用到左子节点或右子节点(如果用不到就不会访问)
    int mid = uL + uR >> 1;
    lld sum = 0;  // 因为是求区间和,所以这里对应的是求和操作
    if (mL <= mid)
        sum += query(u << 1, uL, mid, mL, mR);
    if (mid < mR)
        sum += query(u << 1 | 1, mid + 1, uR, mL, mR);
    return sum;
}

int main() 
{
    scanf("%d%d", &n, &m);
    buildTree(1, 1, n);
    while (m--) {
        int opt, l, r, x;
        scanf("%d%d%d", &opt, &l, &r);
        if (opt == 1) {
            scanf("%d", &x);
            modify(1, 1, n, l, r, x);
        }
        else  printf("%lld\n", query(1, 1, n, l, r));
    }
}
教练的超详细注释版

 树状数组

//求2^k次方的值 
int lowbit(int k){ return k&-k;}

//求数组的和 
int query(int n)
{
    int sum=0;
    while(n>0){  //当n<0时结束程序 
         sum+=c[n];
         n=n-lowbit(n); //将n的二进制表示的最后一个零删掉
    }   
    return sum;
}
//修改数组元素 (此为修改数组中某个数) 
void modify(int i,int x)
{
     while(i<=n){
          c[i]=c[i]+x;
          i=i+lowbit(i);
     }
}

 树状数组模板1(单点修改,区间询问)

 https://www.luogu.org/problem/P3374

#include<bits/stdc++.h>
using namespace std;

int n,m,k,x,l,r,ord,sum,c[500050];

//求2^k次方的值 
int lowbit(int k){ return k&-k;}

//求数组的和 
int query(int n)
{
    int sum=0;
    while(n>0){  //当n<0时结束程序 
         sum+=c[n];
         n=n-lowbit(n); //将n的二进制表示的最后一个零删掉
    }   
    return sum;
}
//修改数组元素 (此为修改数组中某个数) 
void modify(int i,int x)
{
     while(i<=n){
          c[i]=c[i]+x;
          i=i+lowbit(i);
     }
}

int main()
{
  scanf("%d%d",&n,&m);
  for(int i = 1; i <= n; i++){
      int a;
      scanf("%d",&a);
      modify(i,a);
  }
  for(int i = 1; i <= m; i++)  {
      //ord=1,x,k  ord=2,l,r
      scanf("%d",&ord);
      if(ord == 1) {
          scanf("%d%d",&x,&k);
          modify(x,k);
      }
      else {
          scanf("%d%d",&l,&r);
          cout << query(r) - query(l - 1) << endl;
          
      }
  }
  return 0;
}
View Code

 树状数组模板2(区间修改,单点询问)

https://www.luogu.org/problem/P3368

(直接在上一个板子的基础上改铁定T(亲测70),考虑差分来做)

 

#include<bits/stdc++.h>
using namespace std;
const int N = 500050;
int c[N], a[N], d[N];
int n, m; 
int lowbit(int x) {return x & (-x);}

void modify(int x, int y)
{
    while(x <= n){
        c[x] += y;
        x += lowbit(x);
    }
}

int query(int x)
{
    int sum = 0;
    while(x){
        sum += c[x];
        x -= lowbit(x);
    }
    return sum;
    
}
int main()
{
    scanf("%d%d",&n, &m);
    for(int i = 1; i <= n; i++){
        scanf("%d",&a[i]);
        d[i] = a[i] - a[i - 1]; //差分数组
        modify(i, d[i]);   
    }
    int opt, x, y, k;
    for(int i = 1; i <= m; i++){
        scanf("%d",&opt);
        if(opt == 1){
            scanf("%d%d%d",&x, &y, &k);
            modify(x, k);  //差分思想 
            modify(y + 1, -k);
        }
        else{
            scanf("%d",&x);
            printf("%d\n", query(x));
        }
    }
    return 0;
}
View Code

 树状数组模板3(区间修改,区间询问)

http://oj.ipoweru.cn/problem/24201#submit_code

利用了公式:

#include <cstdio>
#include <cmath>
#include <algorithm>

using namespace std;

typedef long long lld;

const int N = 200005;
lld a[N], d[N], id[N];
int n, m;

int lowbit(int x) { return x & -x; }

void modify(lld *t, int i, lld x) {
    while (i <= n) {
        t[i] += x;
        i += lowbit(i);
    }
}

lld query(lld *t, int i) {
    lld sum = 0;
    while (i) {
        sum += t[i];
        i -= lowbit(i);
    }
    return sum;
}

lld q(int r) { return (lld)query(d, r) * (r + 1) - query(id, r); }

int main() {
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i++) {
        scanf("%lld", &a[i]);
        modify(d, i, a[i] - a[i - 1]);
        modify(id, i, i * (a[i] - a[i - 1]));
    }
    while (m--) {
        lld opt, x, y, z;
        scanf("%lld %lld %lld", &opt, &x, &y);
        if (opt == 0) {
            scanf("%lld", &z);
            modify(d, x, z);
            modify(id, x, x * z);
            modify(d, y + 1, -z);
            modify(id, y + 1, (y + 1) * (-z));
        } else
            printf("%lld\n", (lld)(q(y) - q(x - 1)));
    }
    return 0;
}
View Code

 

 

 归并排序

 

#include<bits/stdc++.h>
using namespace std;
#define N 1000005
int a[N] ,b[N]; 
long long cnt;
void merge_sort(int l , int r)
{
    if(l < r){
        int mid = (l + r) / 2 ;
        int i = l; 
        int p = l , q = mid+1;
        merge_sort(l , mid);
        merge_sort(mid+1 , r);
        while(p<=mid || q<=r){
            if(q > r || (p <= mid && a[p] <= a[q])) b[i++] = a[p++];
            else{
                b[i++] = a[q++];
                cnt += mid -p +1;  //将逆序对的个数累加起来
            }
        }
        for(i = l ; i <= r; i++) a[i] = b[i];
    }
}
int main()
{
    int n;
    scanf("%d",&n);
    for(int i = 1 ; i <= n; i ++) cin >> a[i];
    cnt = 0;
    merge_sort(1 , n);
    printf("%lld",cnt);
    return 0;
}
归并排序求逆序对

 拓扑排序

#include<bits/stdc++.h>
using namespace std;
const int N = 202020;
inline int read() {
    char c = getchar();
    int x = 0, f = 1;
    while(c < '0' || c > '9') {
        if(c == '-') f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
    return x * f;
}
int n,m,t,ind[N],a,b,len,yy[N];
vector<int>tx[N];
queue<int>q;
inline bool top()
{
    while(!q.empty()) q.pop(); //用于清空 上一组数据用的队列(第二个出错点 
       for(int i = 1; i <= n; i++) if(!ind[i]) q.push(i);
   
    int sum = 0;
    while(!q.empty()){
        int u = q.front();
            q.pop();
            sum++;  //用于统计多少数入过队 
            for(int i = 0; i < tx[u].size(); i++){ //第三个出错点:vector下标是从0开始 
                int v = tx[u][i]; 
                ind[v]--;    
             if(!ind[v]) q.push(v);  //实现拓扑排序的关键点     
            }
   }
   if(sum == n) return 1;
   else return 0;

}
int main()
{
   t = read(); 
   for(int i = 1; i <= t; i++ ){
    cin >> n >> m;
       memset(ind,0,sizeof(ind));
       memset(tx,0,sizeof(tx));  //第一个出错点:忘记清零 
       for(int j = 1; j <= m; j++){
           cin >> a >> b;
           tx[a].push_back(b);
           ind[b]++;
       }
    if(top()) cout << "Correct";
    else cout << "Wrong";
    cout << endl;  
   }
   return 0;
}
拓扑判环(题干在这https://www.cnblogs.com/phemiku/p/11515388.html

 

求组合数

·Lucas定理

#include <bits/stdc++.h>
#define fr(i, n) for (register int i = 1; i <= n; i++)
using namespace std;
typedef long long LL;
LL mod, p[200009], ans;

LL qpow(LL a, LL b) {
    LL ans = 1;
    while (b) {
        if (b & 1)
            ans = (ans * a) % mod;
        a = (a * a) % mod;
        b >>= 1;
    }
    return ans;
}
LL lucas(LL n, LL m) {
    if (n < m)
        return 0;
    if (n < mod && m < mod)
        return qpow(p[m], mod - 2) * p[n] % mod * qpow(p[n - m], mod - 2) % mod;
    return lucas(n % mod, m % mod) * lucas(n / mod, m / mod) % mod;
}

int main() {
    LL n, m;
    int t;
    scanf("%d", &t);
    while (t--) {
        scanf("%lld %lld %lld", &n, &m, &mod);
        p[0] = 1;
        fr(i, mod) p[i] = p[i - 1] * i % mod;
        printf("%lld\n", lucas(n, m));
    }
}
View Code

 

 ·杨辉三角

https://www.luogu.org/problem/P2822 组合数问题90分代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define min(x,y) ((x)<(y)?(x):(y))
#define fr(i,n) for(register int i = 1; i <= n; ++i)
const int N = 2005;
int a[N][N],t,k,n,m;
int main(){
    scanf("%d%d",&t,&k);
    a[0][0] = 1;
    fr(i,2000){
        a[i][0] = 1;
      fr(j,2000)
          a[i][j] = (a[i-1][j] + a[i-1][j-1]) % k;
    }
    while(t--){
        int ans = 0;
        scanf("%d%d",&n,&m);
        for(int i = 0; i <= n; i++){
            for(int j = 0; j <= i; j++){
                if(j > m) break;
                if(a[i][j] % k == 0) ans++; 
            }
        }
        printf("%d\n",ans);
    }
    return 0;
    onit();
}
View Code

 

100.乱七八糟的东西

//重载运算符比较大小
这玩意在结构体里写完了还要在下面写一个 sort( , )
struct
node { int len; bool operator <(const node &a)const {//重载<操作符。可以对两个node使用<操作符进行比较 return len<a.len; } };

 

posted @ 2019-10-04 14:16  QUEKI嶺冬  阅读(290)  评论(0编辑  收藏  举报
/*! Color themes for Google Code Prettify | MIT License | github.com/jmblog/color-themes-for-google-code-prettify */ .pln{color:#4d4d4c}ol.linenums{margin-top:0;margin-bottom:0;color:#8e908c}li.L0,li.L1,li.L2,li.L3,li.L4,li.L5,li.L6,li.L7,li.L8,li.L9{padding-left:1em;background-color:#fff;list-style-type:decimal!important;}@media screen{.str{color:#718c00}.kwd{color:#8959a8}.com{color:#8e908c}.typ{color:#4271ae}.lit{color:#f5871f}.pun{color:#4d4d4c}.opn{color:#4d4d4c}.clo{color:#4d4d4c}.tag{color:#c82829}.atn{color:#f5871f}.atv{color:#3e999f}.dec{color:#f5871f}.var{color:#c82829}.fun{color:#4271ae}} /*下面是我设置背景色,字体大小和字体*/ .cnblogs-markdown code{ background:#fff!important; } .cnblogs_code,.cnblogs_code span,.cnblogs-markdown .hljs{ font-size:16px!important; } .syntaxhighlighter a, .syntaxhighlighter div, .syntaxhighlighter code, .syntaxhighlighter table, .syntaxhighlighter table td, .syntaxhighlighter table tr, .syntaxhighlighter table tbody, .syntaxhighlighter table thead, .syntaxhighlighter table caption, .syntaxhighlighter textarea { font-size: 16px!important; } .cnblogs_code, .cnblogs_code span, .cnblogs-markdown .hljs{ font-family:consolas, "Source Code Pro", monaco, monospace !important; } //以上是代码高亮 /* 文字特效 */