DES加密和解密PHP,Java,ObjectC统一的方法

PHP的加解密函数

<?php

class DesComponent {
	var $key = '12345678';

	function encrypt($string) {

		$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);
		$iv=null;
		foreach ($ivArray as $element)
			$iv.=CHR($element);


 		$size = mcrypt_get_block_size ( MCRYPT_DES, MCRYPT_MODE_CBC );  
       $string = $this->pkcs5Pad ( $string, $size );  

		$data =  mcrypt_encrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);

		$data = base64_encode($data);
		return $data;
	}

	function decrypt($string) {

		$ivArray=array(0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF);
		$iv=null;
		foreach ($ivArray as $element)
			$iv.=CHR($element);

		$string = base64_decode($string);
		//echo("****");
		//echo($string);
		//echo("****");
		$result =  mcrypt_decrypt(MCRYPT_DES, $this->key, $string, MCRYPT_MODE_CBC, $iv);
   $result = $this->pkcs5Unpad( $result );  

		return $result;
	}
	
	
	 function pkcs5Pad($text, $blocksize)  
    {  
        $pad = $blocksize - (strlen ( $text ) % $blocksize);  
        return $text . str_repeat ( chr ( $pad ), $pad );  
    }  
  
    function pkcs5Unpad($text)  
    {  
        $pad = ord ( $text {strlen ( $text ) - 1} );  
        if ($pad > strlen ( $text ))  
            return false;  
        if (strspn ( $text, chr ( $pad ), strlen ( $text ) - $pad ) != $pad)  
            return false;  
        return substr ( $text, 0, - 1 * $pad );  
    }  
	
}


$des = new DesComponent();
echo ($des->encrypt("19760519"));
echo "<br />";

//die($des->decrypt("zLVdpYUM0qw="));
//die($des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="));

$t2 =$des->decrypt("zLVdpYUM0qw="); 
echo $t2;
echo "--";
echo strlen($t2);
echo is_utf8($t2);


echo "<br />";
$t3 = mb_convert_encoding($t2,"GB2312", "utf-8");
echo $t3;
echo "--";
echo strlen($t3);
echo is_utf8($t3);


echo "<br />";


$t1 =$des->decrypt("zLVdpYUM0qzEsNshEEI6Cg=="); 
echo $t1;
echo "--";
echo strlen($t1);
echo is_utf8($t1);

echo "<br />";
$t3 = mb_convert_encoding($t1, "utf-8","GB2312");
echo $t3;
echo "--";
echo strlen($t3);
echo is_utf8($t3);

function is_utf8($string) { 
return preg_match('%^(?: 
[\x09\x0A\x0D\x20-\x7E] # ASCII 
| [\xC2-\xDF][\x80-\xBF] # non-overlong 2-byte 
| \xE0[\xA0-\xBF][\x80-\xBF] # excluding overlongs 
| [\xE1-\xEC\xEE\xEF][\x80-\xBF]{2} # straight 3-byte 
| \xED[\x80-\x9F][\x80-\xBF] # excluding surrogates 
| \xF0[\x90-\xBF][\x80-\xBF]{2} # planes 1-3 
| [\xF1-\xF3][\x80-\xBF]{3} # planes 4-15 
| \xF4[\x80-\x8F][\x80-\xBF]{2} # plane 16 
)*$%xs', $string); 
}
?>

 

Java的加解密函数

package ghj1976.Demo;


/*
 * Copyright (C) 2010 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
 
import java.io.UnsupportedEncodingException;
 
/**
 * Utilities for encoding and decoding the Base64 representation of
 * binary data.  See RFCs <a
 * href="http://www.ietf.org/rfc/rfc2045.txt">2045</a> and <a
 * href="http://www.ietf.org/rfc/rfc3548.txt">3548</a>.
 */
public class Base64 {
    /**
     * Default values for encoder/decoder flags.
     */
    public static final int DEFAULT = 0;
 
    /**
     * Encoder flag bit to omit the padding '=' characters at the end
     * of the output (if any).
     */
    public static final int NO_PADDING = 1;
 
    /**
     * Encoder flag bit to omit all line terminators (i.e., the output
     * will be on one long line).
     */
    public static final int NO_WRAP = 2;
 
    /**
     * Encoder flag bit to indicate lines should be terminated with a
     * CRLF pair instead of just an LF.  Has no effect if {@code
     * NO_WRAP} is specified as well.
     */
    public static final int CRLF = 4;
 
    /**
     * Encoder/decoder flag bit to indicate using the "URL and
     * filename safe" variant of Base64 (see RFC 3548 section 4) where
     * {@code -} and {@code _} are used in place of {@code +} and
     * {@code /}.
     */
    public static final int URL_SAFE = 8;
 
    /**
     * Flag to pass to {@link Base64OutputStream} to indicate that it
     * should not close the output stream it is wrapping when it
     * itself is closed.
     */
    public static final int NO_CLOSE = 16;
 
    //  --------------------------------------------------------
    //  shared code
    //  --------------------------------------------------------
 
    /* package */ static abstract class Coder {
        public byte[] output;
        public int op;
 
        /**
         * Encode/decode another block of input data.  this.output is
         * provided by the caller, and must be big enough to hold all
         * the coded data.  On exit, this.opwill be set to the length
         * of the coded data.
         *
         * @param finish true if this is the final call to process for
         *        this object.  Will finalize the coder state and
         *        include any final bytes in the output.
         *
         * @return true if the input so far is good; false if some
         *         error has been detected in the input stream..
         */
        public abstract boolean process(byte[] input, int offset, int len, boolean finish);
 
        /**
         * @return the maximum number of bytes a call to process()
         * could produce for the given number of input bytes.  This may
         * be an overestimate.
         */
        public abstract int maxOutputSize(int len);
    }
 
    //  --------------------------------------------------------
    //  decoding
    //  --------------------------------------------------------
 
    /**
     * Decode the Base64-encoded data in input and return the data in
     * a new byte array.
     *
     * <p>The padding '=' characters at the end are considered optional, but
     * if any are present, there must be the correct number of them.
     *
     * @param str    the input String to decode, which is converted to
     *               bytes using the default charset
     * @param flags  controls certain features of the decoded output.
     *               Pass {@code DEFAULT} to decode standard Base64.
     *
     * @throws IllegalArgumentException if the input contains
     * incorrect padding
     */
    public static byte[] decode(String str, int flags) {
        return decode(str.getBytes(), flags);
    }
 
    /**
     * Decode the Base64-encoded data in input and return the data in
     * a new byte array.
     *
     * <p>The padding '=' characters at the end are considered optional, but
     * if any are present, there must be the correct number of them.
     *
     * @param input the input array to decode
     * @param flags  controls certain features of the decoded output.
     *               Pass {@code DEFAULT} to decode standard Base64.
     *
     * @throws IllegalArgumentException if the input contains
     * incorrect padding
     */
    public static byte[] decode(byte[] input, int flags) {
        return decode(input, 0, input.length, flags);
    }
 
    /**
     * Decode the Base64-encoded data in input and return the data in
     * a new byte array.
     *
     * <p>The padding '=' characters at the end are considered optional, but
     * if any are present, there must be the correct number of them.
     *
     * @param input  the data to decode
     * @param offset the position within the input array at which to start
     * @param len    the number of bytes of input to decode
     * @param flags  controls certain features of the decoded output.
     *               Pass {@code DEFAULT} to decode standard Base64.
     *
     * @throws IllegalArgumentException if the input contains
     * incorrect padding
     */
    public static byte[] decode(byte[] input, int offset, int len, int flags) {
        // Allocate space for the most data the input could represent.
        // (It could contain less if it contains whitespace, etc.)
        Decoder decoder = new Decoder(flags, new byte[len*3/4]);
 
        if (!decoder.process(input, offset, len, true)) {
            throw new IllegalArgumentException("bad base-64");
        }
 
        // Maybe we got lucky and allocated exactly enough output space.
        if (decoder.op == decoder.output.length) {
            return decoder.output;
        }
 
        // Need to shorten the array, so allocate a new one of the
        // right size and copy.
        byte[] temp = new byte[decoder.op];
        System.arraycopy(decoder.output, 0, temp, 0, decoder.op);
        return temp;
    }
 
    /* package */ static class Decoder extends Coder {
        /**
         * Lookup table for turning bytes into their position in the
         * Base64 alphabet.
         */
        private static final int DECODE[] = {
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63,
            52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
            -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
            15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1,
            -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
            41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        };
 
        /**
         * Decode lookup table for the "web safe" variant (RFC 3548
         * sec. 4) where - and _ replace + and /.
         */
        private static final int DECODE_WEBSAFE[] = {
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1,
            52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1,
            -1,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
            15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, 63,
            -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
            41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
            -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
        };
 
        /** Non-data values in the DECODE arrays. */
        private static final int SKIP = -1;
        private static final int EQUALS = -2;
 
        /**
         * States 0-3 are reading through the next input tuple.
         * State 4 is having read one '=' and expecting exactly
         * one more.
         * State 5 is expecting no more data or padding characters
         * in the input.
         * State 6 is the error state; an error has been detected
         * in the input and no future input can "fix" it.
         */
        private int state;   // state number (0 to 6)
        private int value;
 
        final private int[] alphabet;
 
        public Decoder(int flags, byte[] output) {
            this.output = output;
 
            alphabet = ((flags & URL_SAFE) == 0) ? DECODE : DECODE_WEBSAFE;
            state = 0;
            value = 0;
        }
 
        /**
         * @return an overestimate for the number of bytes {@code
         * len} bytes could decode to.
         */
        public int maxOutputSize(int len) {
            return len * 3/4 + 10;
        }
 
        /**
         * Decode another block of input data.
         *
         * @return true if the state machine is still healthy.  false if
         *         bad base-64 data has been detected in the input stream.
         */
        public boolean process(byte[] input, int offset, int len, boolean finish) {
            if (this.state == 6) return false;
 
            int p = offset;
            len += offset;
 
            // Using local variables makes the decoder about 12%
            // faster than if we manipulate the member variables in
            // the loop.  (Even alphabet makes a measurable
            // difference, which is somewhat surprising to me since
            // the member variable is final.)
            int state = this.state;
            int value = this.value;
            int op = 0;
            final byte[] output = this.output;
            final int[] alphabet = this.alphabet;
 
            while (p < len) {
                // Try the fast path:  we're starting a new tuple and the
                // next four bytes of the input stream are all data
                // bytes.  This corresponds to going through states
                // 0-1-2-3-0.  We expect to use this method for most of
                // the data.
                //
                // If any of the next four bytes of input are non-data
                // (whitespace, etc.), value will end up negative.  (All
                // the non-data values in decode are small negative
                // numbers, so shifting any of them up and or'ing them
                // together will result in a value with its top bit set.)
                //
                // You can remove this whole block and the output should
                // be the same, just slower.
                if (state == 0) {
                    while (p+4 <= len &&
                           (value = ((alphabet[input[p] & 0xff] << 18) |
                                     (alphabet[input[p+1] & 0xff] << 12) |
                                     (alphabet[input[p+2] & 0xff] << 6) |
                                     (alphabet[input[p+3] & 0xff]))) >= 0) {
                        output[op+2] = (byte) value;
                        output[op+1] = (byte) (value >> 8);
                        output[op] = (byte) (value >> 16);
                        op += 3;
                        p += 4;
                    }
                    if (p >= len) break;
                }
 
                // The fast path isn't available -- either we've read a
                // partial tuple, or the next four input bytes aren't all
                // data, or whatever.  Fall back to the slower state
                // machine implementation.
 
                int d = alphabet[input[p++] & 0xff];
 
                switch (state) {
                case 0:
                    if (d >= 0) {
                        value = d;
                        ++state;
                    } else if (d != SKIP) {
                        this.state = 6;
                        return false;
                    }
                    break;
 
                case 1:
                    if (d >= 0) {
                        value = (value << 6) | d;
                        ++state;
                    } else if (d != SKIP) {
                        this.state = 6;
                        return false;
                    }
                    break;
 
                case 2:
                    if (d >= 0) {
                        value = (value << 6) | d;
                        ++state;
                    } else if (d == EQUALS) {
                        // Emit the last (partial) output tuple;
                        // expect exactly one more padding character.
                        output[op++] = (byte) (value >> 4);
                        state = 4;
                    } else if (d != SKIP) {
                        this.state = 6;
                        return false;
                    }
                    break;
 
                case 3:
                    if (d >= 0) {
                        // Emit the output triple and return to state 0.
                        value = (value << 6) | d;
                        output[op+2] = (byte) value;
                        output[op+1] = (byte) (value >> 8);
                        output[op] = (byte) (value >> 16);
                        op += 3;
                        state = 0;
                    } else if (d == EQUALS) {
                        // Emit the last (partial) output tuple;
                        // expect no further data or padding characters.
                        output[op+1] = (byte) (value >> 2);
                        output[op] = (byte) (value >> 10);
                        op += 2;
                        state = 5;
                    } else if (d != SKIP) {
                        this.state = 6;
                        return false;
                    }
                    break;
 
                case 4:
                    if (d == EQUALS) {
                        ++state;
                    } else if (d != SKIP) {
                        this.state = 6;
                        return false;
                    }
                    break;
 
                case 5:
                    if (d != SKIP) {
                        this.state = 6;
                        return false;
                    }
                    break;
                }
            }
 
            if (!finish) {
                // We're out of input, but a future call could provide
                // more.
                this.state = state;
                this.value = value;
                this.op = op;
                return true;
            }
 
            // Done reading input.  Now figure out where we are left in
            // the state machine and finish up.
 
            switch (state) {
            case 0:
                // Output length is a multiple of three.  Fine.
                break;
            case 1:
                // Read one extra input byte, which isn't enough to
                // make another output byte.  Illegal.
                this.state = 6;
                return false;
            case 2:
                // Read two extra input bytes, enough to emit 1 more
                // output byte.  Fine.
                output[op++] = (byte) (value >> 4);
                break;
            case 3:
                // Read three extra input bytes, enough to emit 2 more
                // output bytes.  Fine.
                output[op++] = (byte) (value >> 10);
                output[op++] = (byte) (value >> 2);
                break;
            case 4:
                // Read one padding '=' when we expected 2.  Illegal.
                this.state = 6;
                return false;
            case 5:
                // Read all the padding '='s we expected and no more.
                // Fine.
                break;
            }
 
            this.state = state;
            this.op = op;
            return true;
        }
    }
 
    //  --------------------------------------------------------
    //  encoding
    //  --------------------------------------------------------
 
    /**
     * Base64-encode the given data and return a newly allocated
     * String with the result.
     *
     * @param input  the data to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static String encodeToString(byte[] input, int flags) {
        try {
            return new String(encode(input, flags), "US-ASCII");
        } catch (UnsupportedEncodingException e) {
            // US-ASCII is guaranteed to be available.
            throw new AssertionError(e);
        }
    }
 
    /**
     * Base64-encode the given data and return a newly allocated
     * String with the result.
     *
     * @param input  the data to encode
     * @param offset the position within the input array at which to
     *               start
     * @param len    the number of bytes of input to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static String encodeToString(byte[] input, int offset, int len, int flags) {
        try {
            return new String(encode(input, offset, len, flags), "US-ASCII");
        } catch (UnsupportedEncodingException e) {
            // US-ASCII is guaranteed to be available.
            throw new AssertionError(e);
        }
    }
 
    /**
     * Base64-encode the given data and return a newly allocated
     * byte[] with the result.
     *
     * @param input  the data to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static byte[] encode(byte[] input, int flags) {
        return encode(input, 0, input.length, flags);
    }
 
    /**
     * Base64-encode the given data and return a newly allocated
     * byte[] with the result.
     *
     * @param input  the data to encode
     * @param offset the position within the input array at which to
     *               start
     * @param len    the number of bytes of input to encode
     * @param flags  controls certain features of the encoded output.
     *               Passing {@code DEFAULT} results in output that
     *               adheres to RFC 2045.
     */
    public static byte[] encode(byte[] input, int offset, int len, int flags) {
        Encoder encoder = new Encoder(flags, null);
 
        // Compute the exact length of the array we will produce.
        int output_len = len / 3 * 4;
 
        // Account for the tail of the data and the padding bytes, if any.
        if (encoder.do_padding) {
            if (len % 3 > 0) {
                output_len += 4;
            }
        } else {
            switch (len % 3) {
                case 0: break;
                case 1: output_len += 2; break;
                case 2: output_len += 3; break;
            }
        }
 
        // Account for the newlines, if any.
        if (encoder.do_newline && len > 0) {
            output_len += (((len-1) / (3 * Encoder.LINE_GROUPS)) + 1) *
                (encoder.do_cr ? 2 : 1);
        }
 
        encoder.output = new byte[output_len];
        encoder.process(input, offset, len, true);
 
        assert encoder.op == output_len;
 
        return encoder.output;
    }
 
    /* package */ static class Encoder extends Coder {
        /**
         * Emit a new line every this many output tuples.  Corresponds to
         * a 76-character line length (the maximum allowable according to
         * <a href="http://www.ietf.org/rfc/rfc2045.txt">RFC 2045</a>).
         */
        public static final int LINE_GROUPS = 19;
 
        /**
         * Lookup table for turning Base64 alphabet positions (6 bits)
         * into output bytes.
         */
        private static final byte ENCODE[] = {
            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
            'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
            'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
            'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/',
        };
 
        /**
         * Lookup table for turning Base64 alphabet positions (6 bits)
         * into output bytes.
         */
        private static final byte ENCODE_WEBSAFE[] = {
            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P',
            'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f',
            'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
            'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '-', '_',
        };
 
        final private byte[] tail;
        /* package */ int tailLen;
        private int count;
 
        final public boolean do_padding;
        final public boolean do_newline;
        final public boolean do_cr;
        final private byte[] alphabet;
 
        public Encoder(int flags, byte[] output) {
            this.output = output;
 
            do_padding = (flags & NO_PADDING) == 0;
            do_newline = (flags & NO_WRAP) == 0;
            do_cr = (flags & CRLF) != 0;
            alphabet = ((flags & URL_SAFE) == 0) ? ENCODE : ENCODE_WEBSAFE;
 
            tail = new byte[2];
            tailLen = 0;
 
            count = do_newline ? LINE_GROUPS : -1;
        }
 
        /**
         * @return an overestimate for the number of bytes {@code
         * len} bytes could encode to.
         */
        public int maxOutputSize(int len) {
            return len * 8/5 + 10;
        }
 
        public boolean process(byte[] input, int offset, int len, boolean finish) {
            // Using local variables makes the encoder about 9% faster.
            final byte[] alphabet = this.alphabet;
            final byte[] output = this.output;
            int op = 0;
            int count = this.count;
 
            int p = offset;
            len += offset;
            int v = -1;
 
            // First we need to concatenate the tail of the previous call
            // with any input bytes available now and see if we can empty
            // the tail.
 
            switch (tailLen) {
                case 0:
                    // There was no tail.
                    break;
 
                case 1:
                    if (p+2 <= len) {
                        // A 1-byte tail with at least 2 bytes of
                        // input available now.
                        v = ((tail[0] & 0xff) << 16) |
                            ((input[p++] & 0xff) << 8) |
                            (input[p++] & 0xff);
                        tailLen = 0;
                    };
                    break;
 
                case 2:
                    if (p+1 <= len) {
                        // A 2-byte tail with at least 1 byte of input.
                        v = ((tail[0] & 0xff) << 16) |
                            ((tail[1] & 0xff) << 8) |
                            (input[p++] & 0xff);
                        tailLen = 0;
                    }
                    break;
            }
 
            if (v != -1) {
                output[op++] = alphabet[(v >> 18) & 0x3f];
                output[op++] = alphabet[(v >> 12) & 0x3f];
                output[op++] = alphabet[(v >> 6) & 0x3f];
                output[op++] = alphabet[v & 0x3f];
                if (--count == 0) {
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                    count = LINE_GROUPS;
                }
            }
 
            // At this point either there is no tail, or there are fewer
            // than 3 bytes of input available.
 
            // The main loop, turning 3 input bytes into 4 output bytes on
            // each iteration.
            while (p+3 <= len) {
                v = ((input[p] & 0xff) << 16) |
                    ((input[p+1] & 0xff) << 8) |
                    (input[p+2] & 0xff);
                output[op] = alphabet[(v >> 18) & 0x3f];
                output[op+1] = alphabet[(v >> 12) & 0x3f];
                output[op+2] = alphabet[(v >> 6) & 0x3f];
                output[op+3] = alphabet[v & 0x3f];
                p += 3;
                op += 4;
                if (--count == 0) {
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                    count = LINE_GROUPS;
                }
            }
 
            if (finish) {
                // Finish up the tail of the input.  Note that we need to
                // consume any bytes in tail before any bytes
                // remaining in input; there should be at most two bytes
                // total.
 
                if (p-tailLen == len-1) {
                    int t = 0;
                    v = ((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 4;
                    tailLen -= t;
                    output[op++] = alphabet[(v >> 6) & 0x3f];
                    output[op++] = alphabet[v & 0x3f];
                    if (do_padding) {
                        output[op++] = '=';
                        output[op++] = '=';
                    }
                    if (do_newline) {
                        if (do_cr) output[op++] = '\r';
                        output[op++] = '\n';
                    }
                } else if (p-tailLen == len-2) {
                    int t = 0;
                    v = (((tailLen > 1 ? tail[t++] : input[p++]) & 0xff) << 10) |
                        (((tailLen > 0 ? tail[t++] : input[p++]) & 0xff) << 2);
                    tailLen -= t;
                    output[op++] = alphabet[(v >> 12) & 0x3f];
                    output[op++] = alphabet[(v >> 6) & 0x3f];
                    output[op++] = alphabet[v & 0x3f];
                    if (do_padding) {
                        output[op++] = '=';
                    }
                    if (do_newline) {
                        if (do_cr) output[op++] = '\r';
                        output[op++] = '\n';
                    }
                } else if (do_newline && op > 0 && count != LINE_GROUPS) {
                    if (do_cr) output[op++] = '\r';
                    output[op++] = '\n';
                }
 
                assert tailLen == 0;
                assert p == len;
            } else {
                // Save the leftovers in tail to be consumed on the next
                // call to encodeInternal.
 
                if (p == len-1) {
                    tail[tailLen++] = input[p];
                } else if (p == len-2) {
                    tail[tailLen++] = input[p];
                    tail[tailLen++] = input[p+1];
                }
            }
 
            this.op = op;
            this.count = count;
 
            return true;
        }
    }
 
    private Base64() { }   // don't instantiate
}

 

package ghj1976.Demo;




import javax.crypto.Cipher;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.DESKeySpec;
import javax.crypto.spec.IvParameterSpec;


public class DES {
	 private static String DESKey = "12345678"; // 字节数必须是8的倍数  
	 private static byte[] iv1 = {(byte)0x12, (byte)0x34, (byte)0x56, (byte)0x78, (byte)0x90, (byte)0xAB, (byte)0xCD, (byte)0xEF};
	 public static void main(String[] args) {
		 System.out.print("xyz");
		DES des = new DES();
		System.out.print(des.encrypt("19760519"));
	} 
	 public byte[] desEncrypt(byte[] plainText) throws Exception  
	    {  
//	        SecureRandom sr = new SecureRandom();  	        
//	        sr.setSeed(iv);
	        
//	    	 IvParameterSpec iv = new IvParameterSpec(key.getBytes("UTF-8"));  
	    	IvParameterSpec iv = new IvParameterSpec(iv1);
	    	 
	        DESKeySpec dks = new DESKeySpec(DESKey.getBytes());  
	        SecretKeyFactory keyFactory = SecretKeyFactory.getInstance("DES");  
	        SecretKey key = keyFactory.generateSecret(dks);  
	        Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");  
	        cipher.init(Cipher.ENCRYPT_MODE, key, iv);  
	        byte data[] = plainText;  
	        byte encryptedData[] = cipher.doFinal(data);  
	        return encryptedData;  
	    }  
	      
	    public String encrypt(String input)   
	    {  
	    	String result = "input";
	        try {
				result = base64Encode(desEncrypt(input.getBytes()));
			} catch (Exception e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}  
			return result;
	    }  
	      
	    public  String base64Encode(byte[] s)   
	    {  
	        if (s == null)  
	            return null;  
	        return Base64.encodeToString(s, Base64.DEFAULT);

	    }  
}

 

 

Object c 的加解密函数

//
//  Utility.h
//  TheDealersForum
//
//  Created by Hailong Zhang on 5/3/11.
//  Copyright 2011 Personal. All rights reserved.
//

#import <Foundation/Foundation.h>
#import <CommonCrypto/CommonDigest.h>
#import <CommonCrypto/CommonCryptor.h>


@interface Utility : NSObject {

}
+ (NSString *) udid;
+ (NSString *) md5:(NSString *)str;
+ (NSString *) doCipher:(NSString *)sTextIn key:(NSString *)sKey context:(CCOperation)encryptOrDecrypt;
+ (NSString *) encryptStr:(NSString *) str;
+ (NSString *) decryptStr:(NSString	*) str;

#pragma mark Based64
+ (NSString *) encodeBase64WithString:(NSString *)strData;
+ (NSString *) encodeBase64WithData:(NSData *)objData;
+ (NSData *) decodeBase64WithString:(NSString *)strBase64;

@end

 

//
//  Utility.m
//  TheDealersForum
//
//  Created by Hailong Zhang on 5/3/11.
//  Copyright 2011 Personal. All rights reserved.
//



#import "Utility.h"
static NSString *_key = @"12345678";

static const char _base64EncodingTable[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
static const short _base64DecodingTable[256] = {
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -1, -1, -2, -1, -1, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-1, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, 62, -2, -2, -2, 63,
	52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -2, -2, -2, -2, -2, -2,
	-2,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14,
	15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -2, -2, -2, -2, -2,
	-2, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
	41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2,
	-2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2, -2
};

@implementation Utility
+ (NSString *) udid
{
	return [Utility encryptStr:[[UIDevice currentDevice] uniqueIdentifier]];
}
+ (NSString *) md5:(NSString *)str

{
	
	const char *cStr = [str UTF8String];
	
	unsigned char result[CC_MD5_DIGEST_LENGTH];
	
	CC_MD5( cStr, strlen(cStr), result );
	
	return [NSString 
			
			stringWithFormat: @"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
			
			result[0], result[1],
			
			result[2], result[3],
			
			result[4], result[5],
			
			result[6], result[7],
			
			result[8], result[9],
			
			result[10], result[11],
			
			result[12], result[13],
			
			result[14], result[15]
			
			];
	
}
+ (NSString *) encryptStr:(NSString *) str
{
	return [Utility doCipher:str key:_key context:kCCEncrypt];
}
+ (NSString *) decryptStr:(NSString	*) str
{
	return [Utility doCipher:str key:_key context:kCCDecrypt];
}
+ (NSString *)doCipher:(NSString *)sTextIn key:(NSString *)sKey
			   context:(CCOperation)encryptOrDecrypt {
	NSStringEncoding EnC = NSUTF8StringEncoding;
	
    NSMutableData * dTextIn;
    if (encryptOrDecrypt == kCCDecrypt) {    
        dTextIn = [[Utility decodeBase64WithString:sTextIn] mutableCopy];    
    }    
    else{    
        dTextIn = [[sTextIn dataUsingEncoding: EnC] mutableCopy];    
    }           
    NSMutableData * dKey = [[sKey dataUsingEncoding:EnC] mutableCopy];            
    [dKey setLength:kCCBlockSizeDES];        
    uint8_t *bufferPtr1 = NULL;    
    size_t bufferPtrSize1 = 0;    
    size_t movedBytes1 = 0;
    //uint8_t iv[kCCBlockSizeDES];
	//memset((void *) iv, 0x0, (size_t) sizeof(iv));
	Byte iv[] = {0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF};
    bufferPtrSize1 = ([sTextIn length] + kCCKeySizeDES) & ~(kCCKeySizeDES -1);    
    bufferPtr1 = malloc(bufferPtrSize1 * sizeof(uint8_t));    
    memset((void *)bufferPtr1, 0x00, bufferPtrSize1);    
	CCCrypt(encryptOrDecrypt, // CCOperation op    
			kCCAlgorithmDES, // CCAlgorithm alg    
			kCCOptionPKCS7Padding, // CCOptions options    
			[dKey bytes], // const void *key    
			[dKey length], // size_t keyLength    
			iv, // const void *iv    
			[dTextIn bytes], // const void *dataIn
			[dTextIn length],  // size_t dataInLength    
			(void *)bufferPtr1, // void *dataOut    
			bufferPtrSize1,     // size_t dataOutAvailable 
			&movedBytes1);      // size_t *dataOutMoved    

	
    NSString * sResult;    
    if (encryptOrDecrypt == kCCDecrypt){    
        sResult = [[[ NSString alloc] initWithData:[NSData dataWithBytes:bufferPtr1     
																  length:movedBytes1] encoding:EnC] autorelease];    
    }    
    else {    
        NSData *dResult = [NSData dataWithBytes:bufferPtr1 length:movedBytes1]; 
        sResult = [Utility encodeBase64WithData:dResult];    
    }           
    return sResult;
}



+ (NSString *)encodeBase64WithString:(NSString *)strData {
	return [Utility encodeBase64WithData:[strData dataUsingEncoding:NSUTF8StringEncoding]];
}

+ (NSString *)encodeBase64WithData:(NSData *)objData {
	const unsigned char * objRawData = [objData bytes];
	char * objPointer;
	char * strResult;
	
	// Get the Raw Data length and ensure we actually have data
	int intLength = [objData length];
	if (intLength == 0) return nil;
	
	// Setup the String-based Result placeholder and pointer within that placeholder
	strResult = (char *)calloc(((intLength + 2) / 3) * 4, sizeof(char));
	objPointer = strResult;
	
	// Iterate through everything
	while (intLength > 2) { // keep going until we have less than 24 bits
		*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
		*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
		*objPointer++ = _base64EncodingTable[((objRawData[1] & 0x0f) << 2) + (objRawData[2] >> 6)];
		*objPointer++ = _base64EncodingTable[objRawData[2] & 0x3f];
		
		// we just handled 3 octets (24 bits) of data
		objRawData += 3;
		intLength -= 3; 
	}
	
	// now deal with the tail end of things
	if (intLength != 0) {
		*objPointer++ = _base64EncodingTable[objRawData[0] >> 2];
		if (intLength > 1) {
			*objPointer++ = _base64EncodingTable[((objRawData[0] & 0x03) << 4) + (objRawData[1] >> 4)];
			*objPointer++ = _base64EncodingTable[(objRawData[1] & 0x0f) << 2];
			*objPointer++ = '=';
		} else {
			*objPointer++ = _base64EncodingTable[(objRawData[0] & 0x03) << 4];
			*objPointer++ = '=';
			*objPointer++ = '=';
		}
	}
	
	// Terminate the string-based result
	*objPointer = '\0';
	
	// Return the results as an NSString object
	return [NSString stringWithCString:strResult encoding:NSASCIIStringEncoding];
}

+ (NSData *)decodeBase64WithString:(NSString *)strBase64 {
	const char * objPointer = [strBase64 cStringUsingEncoding:NSASCIIStringEncoding];
	int intLength = strlen(objPointer);
	int intCurrent;
	int i = 0, j = 0, k;
	
	unsigned char * objResult;
	objResult = calloc(intLength, sizeof(char));
	
	// Run through the whole string, converting as we go
	while ( ((intCurrent = *objPointer++) != '\0') && (intLength-- > 0) ) {
		if (intCurrent == '=') {
			if (*objPointer != '=' && ((i % 4) == 1)) {// || (intLength > 0)) {
				// the padding character is invalid at this point -- so this entire string is invalid
				free(objResult);
				return nil;
			}
			continue;
		}
		
		intCurrent = _base64DecodingTable[intCurrent];
		if (intCurrent == -1) {
			// we're at a whitespace -- simply skip over
			continue;
		} else if (intCurrent == -2) {
			// we're at an invalid character
			free(objResult);
			return nil;
		}
		
		switch (i % 4) {
			case 0:
				objResult[j] = intCurrent << 2;
				break;
				
			case 1:
				objResult[j++] |= intCurrent >> 4;
				objResult[j] = (intCurrent & 0x0f) << 4;
				break;
				
			case 2:
				objResult[j++] |= intCurrent >>2;
				objResult[j] = (intCurrent & 0x03) << 6;
				break;
				
			case 3:
				objResult[j++] |= intCurrent;
				break;
		}
		i++;
	}
	
	// mop things up if we ended on a boundary
	k = j;
	if (intCurrent == '=') {
		switch (i % 4) {
			case 1:
				// Invalid state
				free(objResult);
				return nil;
				
			case 2:
				k++;
				// flow through
			case 3:
				objResult[k] = 0;
		}
	}
	
	// Cleanup and setup the return NSData
	NSData * objData = [[[NSData alloc] initWithBytes:objResult length:j] autorelease];
	free(objResult);
	return objData;
}
@end

posted on 2012-03-18 15:25  迎-客-松  阅读(2028)  评论(0编辑  收藏  举报

导航