图像处理之增强---高斯模糊
卷积是一种线性运算,图像处理中常见的mask运算都是卷积,广泛应用于图像滤波。castlman的书对卷积讲得很详细。
高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到:
for(i=0; i<N; i++)
{
for(j=0; j<N; j++)
{
g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));
sum += g[i*N+j];
}
}
再除以 sum 得到归一化算子
N是滤波器的大小,delta自选
高斯变换就是用高斯函数对图像进行卷积。高斯算子可以直接从离散高斯函数得到:
for(i=0; i<N; i++)
{
for(j=0; j<N; j++)
{
g[i*N+j]=exp(-((i-(N-1)/2)^2+(j-(N-1)/2)^2))/(2*delta^2));
sum += g[i*N+j];
}
}
再除以 sum 得到归一化算子
N是滤波器的大小,delta自选
首先,再提到卷积之前,必须提到卷积出现的背景。卷积是在信号与线性系统的基础上或背景中出现的,脱离这个背景单独谈卷积是没有任何意义的,除了那个所谓褶反公式上的数学意义和积分(或求和,离散情况下)。
信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入输出和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。
因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。
卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
信号与线性系统,讨论的就是信号经过一个线性系统以后发生的变化(就是输入输出和所经过的所谓系统,这三者之间的数学关系)。所谓线性系统的含义,就是,这个所谓的系统,带来的输出信号与输入信号的数学关系式之间是线性的运算关系。
因此,实际上,都是要根据我们需要待处理的信号形式,来设计所谓的系统传递函数,那么这个系统的传递函数和输入信号,在数学上的形式就是所谓的卷积关系。
卷积关系最重要的一种情况,就是在信号与线性系统或数字信号处理中的卷积定理。利用该定理,可以将时间域或空间域中的卷积运算等价为频率域的相乘运算,从而利用FFT等快速算法,实现有效的计算,节省运算代价。
http://blog.sina.com.cn/s/blog_6d0e97bb01013op2.html 上面来自这里
http://blog.csdn.net/jia20003/article/details/7234741
http://blog.csdn.net/jia20003/article/details/16369143
root