【图论】【最小生成树】[IOI2003]maintain
题目描述:点击此处
解题思路:
在加边的同时对边进行插入排序,当边的数量≥n-1时,进行kruskal,此时每次kruscal的复杂度为O(m),算法的时间复杂度为O(m^2)
实现代码
#include<cstdio>
#include<cstring>
#define INF 0x7f7f7f7f
#define MAXN 200
#define MAXM 6000
#include<algorithm>
using namespace std;
int n,w,fa[MAXN+10],ans;
struct node{
int u,v,wt;
}edge[MAXM+10];
int find_fa(int x){
if(fa[x]==x)
return x;
return find_fa(fa[x]);
}
int kruskal(int ne){
int i,j=0,u,v,ret=0;
for(i=1;i<=n;i++)
fa[i]=i;
for(i=1;i<n;i++){
for(j++;j<=ne;j++){
u=edge[j].u,v=edge[j].v;
fa[u]=find_fa(u);
fa[v]=find_fa(v);
if(fa[u]!=fa[v]){
ret+=edge[j].wt;
fa[fa[v]]=fa[u];
break;
}
}
if(j>ne)
return -1;
}
return ret;
}
int main()
{
int i,j,k;
scanf("%d%d",&n,&w);
for(i=1;i<=w;i++){
node t;
scanf("%d%d%d",&t.u,&t.v,&t.wt);
for(j=1;j<i;j++)
if(edge[j].wt>t.wt){
for(k=i;k>j;k--)
edge[k]=edge[k-1];
break;
}
edge[j]=t;
if(i<n-1){
puts("-1");
continue;
}
printf("%d\n",kruskal(i));
}
}