tf.variable_scope()和tf.name_scope()
1.tf.variable_scope
功能:tf.variable_scope可以让不同命名空间中的变量取相同的名字,无论tf.get_variable
或者tf.Variable
生成的变量
TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/variable_scope?hl=en
举例:
with tf.variable_scope('V1'): a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2') with tf.variable_scope('V2'): a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2') with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print(a1.name) print(a2.name) print(a3.name) print(a4.name)
with tf.variable_scope("foo"): v = tf.get_variable("v", [1]) with tf.variable_scope("foo", reuse=True): v1 = tf.get_variable("v", [1]) assert v1 == v #不报错
如果想要重用变量,可以设置reuse_variables()
import numpy as np with tf.variable_scope('V1'): a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2') tf.get_variable_scope().reuse_variables() assert tf.get_variable_scope().reuse == True a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2') with tf.variable_scope('V1',reuse=True): a5 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print(a1.name) print(a2.name) print(a3.name) print(a4.name) print(a5.name)
variable重名,虽然name设置的一样,但是实际是不共享同一个变量的;get_variable重name,其实是共享的同一个变量。
2.tf.name_scope
功能:tf.name_scope具有类似的功能,但只限于tf.Variable生成的变量
TensorFlow链接:https://tensorflow.google.cn/api_docs/python/tf/name_scope?hl=en
with tf.name_scope('V1'): a1 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) a2 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2') with tf.name_scope('V2'): a3 = tf.get_variable(name='a1', shape=[1], initializer=tf.constant_initializer(1)) a4 = tf.Variable(tf.random_normal(shape=[2, 3], mean=0, stddev=1), name='a2') with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print(a1.name) print(a2.name) print(a3.name) print(a4.name)
a1,a3会报错:ValueError: Variable a1 already exists, disallowed. Did you mean to set reuse=True or reuse=tf.AUTO_REUSE in VarScope? Originally defined at:
参考文献:
【1】tf.variable_scope和tf.name_scope的用法
【2】参数共享:https://jasdeep06.github.io/posts/variable-sharing-in-tensorflow/