还记得上篇讲到的platform总线、设备、驱动的知识??这里我们先来看一段documentation/filesystems/sysfs.txt里关于sysfs文件系统的描述:
sysfs is a ram-based filesystem initially based on ramfs.It provides a means to export kernel data structures,their attributes,and the linkages between them to userspace.
sysfs 文件系统是基于ram文件系统的,
这里注意:
ramdisk 文件系统基于磁盘模拟技术,实际文件系统是ex2 ex3等
sysfs是一种基于ram文件系统,和proc一样。
Sysfs文件系统是一个类似于proc文件系统的特殊文件系统,用于将系统中的设备组织成层次结构,并向用户模式程序提供详细的内核数据结构信息。
其实,就是 在用户态可以通过对sys文件系统的访问,来看内核态的一些驱动或者设备等。
好了,下面直接去sys目录看看吧!!!
localhost:/sys#ls
/sys/ block/ bus/ class/ devices/ firmware/ kernel/ module/ power/
Block目录:包含所有的块设备,进入到block目录下,会发现下面全是link文件,link到sys/device/目录下的一些设备。
Devices目录:包含系统所有的设备,并根据设备挂接的总线类型组织成层次结构
Bus目录:包含系统中所有的总线类型
Drivers目录:包括内核中所有已注册的设备驱动程序
Class目录:系统中的设备类型(如网卡设备,声卡设备等)。去class目录中看一下,随便进到一个文件夹下,会发现该文件夹下的文件其实是连接文件,link到/sys/device/.http://www.cnblogs.com/...下的一个设备文件。 可以说明,其实class目录并不会新建什么设备,只是将已经注册的设备,在class目录下重新归类,放在一起。
但是,你可能根本没有去关心过sysfs的挂载过程,她是这样被挂载的。
mount -t sysfs sysfs /sys
但是sys文件是根据什么依据来创建其内容呢?他的信息来源是什么呢?
下面来分析sys的信息来源。
Linus设备底层模型
Kobject
应该说每个Kobject结构都对应一个 目录。for example:/sys/bus/pci/drivers/serial/ 路径, serial这个目录就是由一个kobject 结构体 来表示的。由此可见,Kobject是用来表示 直接对应着一个 设备,或设备驱动 的目录。Kobject包含了 这个目录的一些信息,如:目录名,父目录,设备名称等等一些信息。当然,如果Kobject用来表示一个目录,那么他所包含的信息是差不多了,但是Kobject表示的目录是用来描述某一个设备/设备驱动 的。所以仅仅Kobject这个结构体还不能完全的描述这个设备/设备驱动,再所以,Kobject这个结构体不会单独使用,一般都会包含在另一个结构体中,用网络上的话说就是包含在一个容器中。这个容器可以是:device结构体,device_drive结构体。现在层次就很明显了,device/device_drive来表示一个设备/设备驱动,当然包含了这个设备/设备驱动的信息,并且还包含了这个驱动所对应的目录的信息,Kobject结构。
当然device/device_drive在另外一层的东西了,后面再分析。我们在这里就先分析Kobject结构。
注意:在kenerl中,如kref,前面讲到的 page_reference变量。 都用来表示被引用。 所以 以后看变量的时候要注意看 ref或reference,来表示被引用。
相关函数
void kobject_init(struct kobject * kobj);kobject初始化函数。
int kobject_set_name(struct kobject *kobj, const char *format, ...);设置指定kobject的名称。
struct kobject *kobject_get(struct kobject *kobj);将kobj 对象的引用计数加1,同时返回该对象的指针。
void kobject_put(struct kobject * kobj); 将kobj对象的引用计数减1,如果引用计数降为0,则调用kobject release()释放该kobject对象。
int kobject_add(struct kobject * kobj);将kobj对象加入Linux设备层次。挂接该kobject对象到kset的list链中,增加父目录各级kobject的引用计数,在其parent指向的目录下创建文件节点,并启动该类型内核对象的hotplug函数。
int kobject_register(struct kobject * kobj);kobject注册函数。通过调用kobject init()初始化kobj,再调用kobject_add()完成该内核对象的注册。
void kobject_del(struct kobject * kobj);从Linux设备层次(hierarchy)中删除kobj对象。
void kobject_unregister(struct kobject * kobj);kobject注销函数。与kobject register()相反,它首先调用kobject del从设备层次中删除该对象,再调用kobject put()减少该对象的引用计数,如果引用计数降为0,则释放kobject对象。
kobject下的结构体描述:
struct kobj_type
{
void (*release)(struct kobject *);
struct sysfs_ops * sysfs_ops;
struct attribute ** default_attrs;
};
Kobj type数据结构包含三个域:一个release方法用于释放kobject占用的资源;一个sysfs ops指针指向sysfs操作表和一个sysfs文件系统缺省属性列表。
Sysfs操作表包括两个函数store()和show()。当用户态读取属性时,show()函数被调用,该函数编码指定属性值存入buffer中返回给用户态;而store()函数用于存储用户态传入的属性值。
attribute struct attribute
{
char * name;
struct module * owner;
mode_t mode;
};
attribute属性。它以文件的形式输出到sysfs的目录当中。在kobject对应的目录下面。文件 名就是name。文件读写的方法对应于kobj type中的sysfs ops。
Kset
像刚才所说,每个Kobject结构都对应一个 目录。for example:/sys/bus/pci/drivers/serial/ 路径, /serial/这个目录由一个kobject 结构体 来表示的。但是/serial/的上一级目录/drivers/如何表示呢?那么就出现了Kset这个结构体。
- /**
- * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem.
- *
- * A kset defines a group of kobjects. They can be individually
- * different "types" but overall these kobjects all want to be grouped
- * together and operated on in the same manner. ksets are used to
- * define the attribute callbacks and other common events that happen to
- * a kobject.
- *
- * @list: the list of all kobjects for this kset
- * @list_lock: a lock for iterating over the kobjects
- * @kobj: the embedded kobject for this kset (recursion, isn't it fun...)
- * @uevent_ops: the set of uevent operations for this kset. These are
- * called whenever a kobject has something happen to it so that the kset
- * can add new environment variables, or filter out the uevents if so
- * desired.
- */
- struct kset {
- struct list_head list; //由于Kset下会有很多个Kobject的目录,所以使用一个list将他们全部link起来。
- spinlock_t list_lock; //锁机制
- struct kobject kobj; //Kest本质上来说,也是个目录,所以他也使用了Kobject,来表示他自己的这个目录
- struct kset_uevent_ops *uevent_ops; //由于Kset是将很多的有公共特性的Kobject集中到一起,所以这个变量操作,在他的目录下的一些共性操作。
- };
subsystem
在以前的版本中,还有subsystem结构,但 是在现在的版本中都已经去掉了,用Kset来代替
1 struct subsystem {
2 struct kset kset;
3
4 struct rw semaphore rwsem;
5
6 };
由上面声明可以看出,完全可以让Kset来代替subsystem结构。
总结:
1,在sys下,表示一个目录使用的结构体是 Kobject,但是在linux的内核中,有硬件的设备 和 软件的驱动,在sys下都需要用一个目录来表示。 单纯的一个Kobject结构无法表示完全,增加了容器,来封装Kobject。 即下面要将的:device和drive_device结构。
2, 最底层驱动目录的上一层目录,从sys角度上来说,他依然是个目录,所以他也有Kobjec这个变量。但是从他的意义上讲,他将 一些有公共特性Kobjec 的 device/driver_device结构组织到了一起,所以除了有Kobject这个变量外,他又添加了一些变量,组成了Kset这个结构来表示这一级的目录。但是仅仅是用Kset来表示了这一级的目录,和1,一样,仅仅表示一个目录是不够的,在linux内核中,需要他在软件上有个映射。所以,也将Kset进行了封装,形成了 bus_type这个结构。
3, 从1 ,2,的解释可以看出,应为kobject在Kset的目录下,那么 device/device_driver 就在 bus_type结构下。所以,linux驱动模型中,驱动和设备都是挂在总线下面的。
4, 如上所述,Kset的意义:表示一个目录(由结构体下的Kobject来完成),并且这个目录下的所有目录有共同的特性(所以说,Kset表示的目录下,不一定非要是Kobject街头的,也可以是Kset结构的。即:Kset嵌套Kset)。所以使用Kset来代替了以前的 subsystem结构。
贴两张图来形象了解一下:
1, Kset和Kobject的连接图(from linux那些事之我是sys)
2,整个sys目录的结构体表示图:(from ULK--当然,在这里subsystem结构要换成Kset了,但我个人认为,以前的subsystem结构上会更清晰,不是吗?)
(但这边有个问题。。。Kobject通过下面的attribute来建立目录下的文件,但我看到目录下有好几个文件,难道是根据一个attribute来建立好几个文件?疑惑ing,好像attribute是个指针,还能当数组首地址?bus_add_attrs函数中如是说)
设备模型的上层容器
刚才讲了Kset和Kobject结构体,都是用来表示 sys下的目录结构的。下面来讲驱动中封装这些结构的容器。
总线bus
bus_type结构: 刚才上面已经将的够多的了,闲话少说,直接上code。
1 struct bus_type {
2 const char *name; //总线的名称,这个名字理论上并不是sys/bus/下的那些目录的目录名。那些目录的目录名应该是在下面变量 subsys_private p.sbusys的name变量中。但是往往那个name是由这个name赋值的,所以就一样的。但这里要明白的是(还是上面的老生常谈),表示目录是由Kset.Kobject这个东西来表示的。
3 struct bus_attribute *bus_attrs; //根据后面的bus_add_attrs函数分析,这些个属性可能是数组
4 struct device_attribute *dev_attrs;
5 struct driver_attribute *drv_attrs; //bus device driver的属性,一些操作导入导出的属性,等后面再分析。
6
7 int (*match)(struct device *dev, struct device_driver *drv);
8 int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
9 int (*probe)(struct device *dev);
10 int (*remove)(struct device *dev);
11 void (*shutdown)(struct device *dev);
12
13 int (*suspend)(struct device *dev, pm_message_t state);
14 int (*resume)(struct device *dev); //总线的操作
15
16 const struct dev_pm_ops *pm; //power manage 的operations
17
18 struct subsys_private *p; 见下面:
19 };
1 struct subsys_private { //为了保持和上面的代码的连贯,我将这个结构体的注释部分放到下面了。注释还是比较清楚的,不解释
2 struct kset subsys;
3 struct kset *devices_kset;</p><p> struct kset *drivers_kset;
4 struct klist klist_devices;
5 struct klist klist_drivers;
6 struct blocking_notifier_head bus_notifier;
7 unsigned int drivers_autoprobe:1;
8 struct bus_type *bus;</p><p> struct list_head class_interfaces;
9 struct kset glue_dirs;
10 struct mutex class_mutex;
11 struct class *class;
12 };
13 * struct subsys_private - structure to hold the private to the driver core portions of the bus_type/class structure.
14 *
15 * @subsys - the struct kset that defines this subsystem
16 * @devices_kset - the list of devices associated
17 *
18 * @drivers_kset - the list of drivers associated
19 * @klist_devices - the klist to iterate over the @devices_kset
20 * @klist_drivers - the klist to iterate over the @drivers_kset
21 * @bus_notifier - the bus notifier list for anything that cares about things
22 * on this bus.
23 * @bus - pointer back to the struct bus_type that this structure is associated
24 * with.
25 *
26 * @class_interfaces - list of class_interfaces associated
27 * @glue_dirs - "glue" directory to put in-between the parent device to
28 * avoid namespace conflicts
29 * @class_mutex - mutex to protect the children, devices, and interfaces lists.
30 * @class - pointer back to the struct class that this structure is associated
31 * with.
32 *
33 * This structure is the one that is the actual kobject allowing struct
34 * bus_type/class to be statically allocated safely. Nothing outside of the
35 * driver core should ever touch these fields.
36 */</p>
这个结构体用来描述比如:/sys/bus/pci pci总线,/sys/bus/platform platform总线等。
另外:从这个结构体分析下来,整个bus的目录结构都很清楚了eg:
1,可以找到总线下的设备目录: bus_type bus ---> subsys_private p---->Kest devices_kset
2,可以找到总线下的设备驱动目录: bus_type bus ---> subsys_private p---->Kest driver_kset
另外,找到的也只是目录,因为找到的仅仅是Kset结构。
设备device
首先明白,device这个结构并不是直接挂在bus下的,可以到/sys/bus/platform/device下随便看一下,发现里面的都是link文件,link到/sys/device/下。所以真正的device结构体的在/sys/device下的。
- struct device {
- struct device *parent; //设备的父设备指针,那么就是说device的目录也是可以嵌套的?到/sys/device/platform/serial8250目录下看看,竟然还存在着 tty/ 目录,是不是这样嵌套的呢??天知道。。。。。
- struct device_private *p;
- struct kobject kobj; //这个就是说了好久的 Kobject
- const char *init_name; /* initial name of the device */
- struct device_type *type;
- struct mutex mutex; /* mutex to synchronize calls to
- * its driver.
- */
- struct bus_type *bus; /* type of bus device is on *///他所在的总线的类型
- struct device_driver *driver; /* which driver has allocated this //支持的驱动
- device */
- void *platform_data; /* Platform specific data, device
- core doesn't touch it */
- struct dev_pm_info power;
- struct dev_power_domain *pwr_domain;
- #ifdef CONFIG_NUMA
- int numa_node; /* NUMA node this device is close to */
- #endif
- u64 *dma_mask; /* dma mask (if dma'able device) */
- u64 coherent_dma_mask;/* Like dma_mask, but for
- alloc_coherent mappings as
- not all hardware supports
- 64 bit addresses for consistent
- allocations such descriptors. */
- struct device_dma_parameters *dma_parms;
- struct list_head dma_pools; /* dma pools (if dma'ble) */
- struct dma_coherent_mem *dma_mem; /* internal for coherent mem
- override */
- /* arch specific additions */
- struct dev_archdata archdata;
- struct device_node *of_node; /* associated device tree node */
- dev_t devt; /* dev_t, creates the sysfs "dev" */
- spinlock_t devres_lock;
- struct list_head devres_head;
- struct klist_node knode_class;
- struct class *class;
- const struct attribute_group **groups; /* optional groups */
- void (*release)(struct device *dev);
- };
设备driver
- struct device_driver {
- const char *name;
- struct bus_type *bus;
- struct module *owner;
- const char *mod_name; /* used for built-in modules */
- bool suppress_bind_attrs; /* disables bind/unbind via sysfs */
- const struct of_device_id *of_match_table;
- int (*probe) (struct device *dev);
- int (*remove) (struct device *dev);
- void (*shutdown) (struct device *dev);
- int (*suspend) (struct device *dev, pm_message_t state);
- int (*resume) (struct device *dev);
- const struct attribute_group **groups;
- const struct dev_pm_ops *pm;
- struct driver_private *p;
- };
设备模型的注册等操作:
总线的操作:
用户可以自己注册一个总线,然后将自己喜欢的设备和驱动挂载到下面。但是linux 2.6中,有个默认的总线,platform总线。我们就分析一下这个总线。
小记:随手在Source insight里敲了个 platform_bus_init,结果的真的有这个函数,再看一下谁调用他了吧? 竟然是drive_init。啊。。终于找到组织了,在start_kernel的最后一步后调用这个drive_init了。
- int __init platform_bus_init(void)
- {
- int error;
- early_platform_cleanup(); //清除platform总线上的设备?不确定,,,好像就是将early_platform_device_list这个里的内容清空。
- error = device_register(&platform_bus); //设备注册。哦,linux将platform也当成了一个设备,他在/sys/device目录下。当然,以后会在platform这个设备下再建立其他的设备,回顾刚才介绍device结构体时候有个parent变量,应该就是用在这里的。具体device_register这个函数,后面再介绍
- if (error)
- return error;
- error = bus_register(&platform_bus_type); //总线的注册。
- if (error)
- device_unregister(&platform_bus);
- return error;
- }
- * bus_register - register a bus with the system.
- * @bus: bus.
- *
- * Once we have that, we registered the bus with the kobject
- * infrastructure, then register the children subsystems it has:
- * the devices and drivers that belong to the bus.
- */
- int bus_register(struct bus_type *bus)
- {
- int retval;
- struct subsys_private *priv;
- priv = kzalloc(sizeof(struct subsys_private), GFP_KERNEL);
- if (!priv)
- return -ENOMEM;
- priv->bus = bus;
- bus->p = priv;
- BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier); //bus_notifier就是个读写信号量,和RCU机制,这里进行初始化
- retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name); //设置name,这个name会显示在sys/bus/下
- if (retval)
- goto out;
- priv->subsys.kobj.kset = bus_kset;
- priv->subsys.kobj.ktype = &bus_ktype;
- priv->drivers_autoprobe = 1;
- retval = kset_register(&priv->subsys); //这个应该是注册bus,但看函数名是ket_register,所以可能会根据刚才对subsys.kobj.kset的赋值来判定是bus,并注册。后面分析。
- if (retval)
- goto out;
- retval = bus_create_file(bus, &bus_attr_uevent); //在对应的bus目录下,根据attribute来创建一个文件
- if (retval)
- goto bus_uevent_fail;
- priv->devices_kset = kset_create_and_add("devices", NULL, //这就函数应该是创建目录,所以在每个bus下会有 device和driver 两个目录。
- &priv->subsys.kobj);
- if (!priv->devices_kset) {
- retval = -ENOMEM;
- goto bus_devices_fail;
- }
- priv->drivers_kset = kset_create_and_add("drivers", NULL,
- &priv->subsys.kobj);
- if (!priv->drivers_kset) {
- retval = -ENOMEM;
- goto bus_drivers_fail;
- }
- klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
- klist_init(&priv->klist_drivers, NULL, NULL); //klist还是没搞明白怎么用,以后再说吧
- retval = add_probe_files(bus); //这个也是在对应的总线目录下,建立bus_attr_drivers_probe 和 bus_attr_drivers_autoprobe文件。应该是probe的时候使用。
- if (retval)
- goto bus_probe_files_fail;
- retval = bus_add_attrs(bus); //循环将所有的bus的属性都建立成一个文件。
- if (retval)
- goto bus_attrs_fail;
- pr_debug("bus: '%s': registered\n", bus->name);
- return 0;
- bus_attrs_fail:
- remove_probe_files(bus);
- bus_probe_files_fail:
- kset_unregister(bus->p->drivers_kset);
- bus_drivers_fail:
- kset_unregister(bus->p->devices_kset);
- bus_devices_fail:
- bus_remove_file(bus, &bus_attr_uevent);
- bus_uevent_fail:
- kset_unregister(&bus->p->subsys);
- out:
- kfree(bus->p);
- bus->p = NULL;
- return retval;
- }
/**
kset_register - initialize and add a kset.
- * @k: kset.
- */
- int kset_register(struct kset *k)
- {
- int err;
- if (!k)
- return -EINVAL;
- kset_init(k); //初始化,没什么东西
- err = kobject_add_internal(&k->kobj); //下面分析
- if (err)
- return err;
- kobject_uevent(&k->kobj, KOBJ_ADD); //通过这个函数的注释可知,向usrspace发送信号。
- return 0;
- }
- static int kobject_add_internal(struct kobject *kobj)
- {
- int error = 0;
- struct kobject *parent;</p><p> if (!kobj)
- return -ENOENT;</p><p> if (!kobj->name || !kobj->name[0]) {
- WARN(1, "kobject: (%p): attempted to be registered with empty "
- "name!\n", kobj);
- return -EINVAL;
- }
- parent = kobject_get(kobj->parent);</p><p> /* join kset if set, use it as parent if we do not already have one */
- if (kobj->kset) {
- if (!parent)
- parent = kobject_get(&kobj->kset->kobj); //get kobject->kset, 判断与parent对比。
- obj_kset_join(kobj); //这个函数,是将kobject的entry这个变量 添加到 他的 上一级的kset结构的 list中。
- kobj->parent = parent;
- }
- pr_debug("kobject: '%s' (%p): %s: parent: '%s', set: '%s'\n",
- kobject_name(kobj), kobj, __func__,
- parent ? kobject_name(parent) : "<NULL>",
- kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");</p><p> error = create_dir(kobj); //创建目录。比如:/sys/bus 下的 platform, pci等目录。
- if (error) {
- kobj_kset_leave(kobj);
- kobject_put(parent);
- kobj->parent = NULL;</p><p> /* be noisy on error issues */
- if (error == -EEXIST)
- printk(KERN_ERR "%s failed for %s with "
- "-EEXIST, don't try to register things with "
- "the same name in the same directory.\n",
- __func__, kobject_name(kobj));
- else
- printk(KERN_ERR "%s failed for %s (%d)\n",
- __func__, kobject_name(kobj), error);
- dump_stack();
- } else
- kobj->state_in_sysfs = 1;</p><p> return error;
- }</p>
到此,bus_register解释完成。
- * device_register - register a device with the system.
- * @dev: pointer to the device structure
- *
- * This happens in two clean steps - initialize the device
- * and add it to the system. The two steps can be called
- * separately, but this is the easiest and most common.
- * I.e. you should only call the two helpers separately if
- * have a clearly defined need to use and refcount the device
- * before it is added to the hierarchy.
- *
- * NOTE: _Never_ directly free @dev after calling this function, even
- * if it returned an error! Always use put_device() to give up the
- * reference initialized in this function instead.
- */
- int device_register(struct device *dev)
- {
- device_initialize(dev);
- return device_add(dev);
- }
- * device_initialize - init device structure.
- * @dev: device.
- *
- * This prepares the device for use by other layers by initializing
- * its fields.
- * It is the first half of device_register(), if called by
- * that function, though it can also be called separately, so one
- * may use @dev's fields. In particular, get_device()/put_device()
- * may be used for reference counting of @dev after calling this
- * function.
- *
- * NOTE: Use put_device() to give up your reference instead of freeing
- * @dev directly once you have called this function.
- */
- void device_initialize(struct device *dev)
- {
- dev->kobj.kset = devices_kset;
- kobject_init(&dev->kobj, &device_ktype);
- INIT_LIST_HEAD(&dev->dma_pools);
- mutex_init(&dev->mutex);
- lockdep_set_novalidate_class(&dev->mutex);
- spin_lock_init(&dev->devres_lock);
- INIT_LIST_HEAD(&dev->devres_head);
- device_pm_init(dev);
- set_dev_node(dev, -1);
- }
dev_initialize,不解释。
这里有个疑问:在bus_register的时候,有条语句:priv->subsys.kobj.kset = bus_kset;。在dev_initialize的时候也有条dev->kobj.kset = devices_kset;语句。 刚才以为是上级目录的kset结构。但是如此看来好像不是很对,因为dev的上级目录是不定的,可能在/sys/device/platform下,也可能在其他。但是都赋值成devices_kset显然不对。 那么有可能在一个标志。所有的bus的subsys.kobj.kset 这个变量都是bus_kset, 所有dev->kobj.kset的变量都是devices_kset。具体为什么?
天空中深沉的传来一句话:1+1=几?
我说:2
啪,一道雷劈死我了。答曰:你知道的太多了。 为了留条命,就不解释了。
- /**
- * device_add - add device to device hierarchy.
- * @dev: device.
- *
- * This is part 2 of device_register(), though may be called
- * separately _iff_ device_initialize() has been called separately.
- *
- * This adds @dev to the kobject hierarchy via kobject_add(), adds it
- * to the global and sibling lists for the device, then
- * adds it to the other relevant subsystems of the driver model.
- *
- * NOTE: _Never_ directly free @dev after calling this function, even
- * if it returned an error! Always use put_device() to give up your
- * reference instead.
- */
- int device_add(struct device *dev)
- {
- struct device *parent = NULL;
- struct class_interface *class_intf;
- int error = -EINVAL;
- dev = get_device(dev);
- if (!dev)
- goto done;
- if (!dev->p) {
- error = device_private_init(dev);
- if (error)
- goto done;
- }
- /*
- * for statically allocated devices, which should all be converted
- * some day, we need to initialize the name. We prevent reading back
- * the name, and force the use of dev_name()
- */
- if (dev->init_name) {
- dev_set_name(dev, "%s", dev->init_name);
- dev->init_name = NULL;
- }
- if (!dev_name(dev)) {
- error = -EINVAL;
- goto name_error;
- }
- pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
- parent = get_device(dev->parent);
- setup_parent(dev, parent);
- /* use parent numa_node */
- if (parent)
- set_dev_node(dev, dev_to_node(parent));
- //以上是对device进行初始化,包括name,private,parent……
- /* first, register with generic layer. */
- /* we require the name to be set before, and pass NULL */
- error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); //device添加,根据他的parent等,当然还会根据他的attribute built一些文件。
- if (error)
- goto Error;
- /* notify platform of device entry */
- if (platform_notify)
- platform_notify(dev);
- error = device_create_file(dev, &uevent_attr); //built attr file
- if (error)
- goto attrError;
- if (MAJOR(dev->devt)) {
- error = device_create_file(dev, &devt_attr);
- if (error)
- goto ueventattrError;
- error = device_create_sys_dev_entry(dev);
- if (error)
- goto devtattrError;
- devtmpfs_create_node(dev);
- }
- error = device_add_class_symlinks(dev); //在其他文件夹 建立link文件,这就是为什么在class目录下也能看到device的目录和文件了
- if (error)
- goto SymlinkError;
- error = device_add_attrs(dev);
- if (error)
- goto AttrsError;
- error = bus_add_device(dev); //在bus目录下 建立link文件,所以在/sys/bus/platform/device下回看到n多个link文件。
- if (error)
- goto BusError;
- error = dpm_sysfs_add(dev);
- if (error)
- goto DPMError;
- device_pm_add(dev);
- /* Notify clients of device addition. This call must come
- * after dpm_sysf_add() and before kobject_uevent().
- */
- if (dev->bus)
- blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
- BUS_NOTIFY_ADD_DEVICE, dev);
- kobject_uevent(&dev->kobj, KOBJ_ADD);
- bus_probe_device(dev); //进行probe,看有没和device相对应的driver文件。
- if (parent)
- klist_add_tail(&dev->p->knode_parent,
- &parent->p->klist_children);
- if (dev->class) {
- mutex_lock(&dev->class->p->class_mutex);
- /* tie the class to the device */
- klist_add_tail(&dev->knode_class,
- &dev->class->p->klist_devices);
- /* notify any interfaces that the device is here */
- list_for_each_entry(class_intf,
- &dev->class->p->class_interfaces, node)
- if (class_intf->add_dev)
- class_intf->add_dev(dev, class_intf);
- mutex_unlock(&dev->class->p->class_mutex);
- }
- done:
- put_device(dev);
- return error;
- DPMError:
- bus_remove_device(dev);
- BusError:
- device_remove_attrs(dev);
- AttrsError:
- device_remove_class_symlinks(dev);
- SymlinkError:
- if (MAJOR(dev->devt))
- devtmpfs_delete_node(dev);
- if (MAJOR(dev->devt))
- device_remove_sys_dev_entry(dev);
- devtattrError:
- if (MAJOR(dev->devt))
- device_remove_file(dev, &devt_attr);
- ueventattrError:
- device_remove_file(dev, &uevent_attr);
- attrError:
- kobject_uevent(&dev->kobj, KOBJ_REMOVE);
- kobject_del(&dev->kobj);
- Error:
- cleanup_device_parent(dev);
- if (parent)
- put_device(parent);
- name_error:
- kfree(dev->p);
- dev->p = NULL;
- goto done;
- }
当然还有 drive_register的函数,其实和device_register差不多,另外,driver_register也会在最后进行probe,看有没有相应的设备。driver_register会先check这个drvier所在的bus上有没有probe函数,如果有就运行这个函数进行probe,如果没有,就运行自己的probe进行probe,这就是我们在驱动中经常看到的probe函数。
所以,在驱动中,先运行drive_register和先运行device_register都是一样的。
到这里,我们看完了platform总线如何对底层的kobject的封装机制了吧???亲们是否明白了呢???呵呵,下面的驱动内容会介绍不同的封装类型,请注意面向对象的思想。