H5版俄罗斯方块(3)---游戏的AI算法

 

前言:
  算是"long long ago"的事了, 某著名互联网公司在我校举行了一次"lengend code"的比赛, 其中有一题就是"智能俄罗斯方块". 本着一向甘做分母, 闪耀分子的绿叶精神, 着着实实地打了一份酱油. 这次借学习H5的机会, 再来重温下俄罗斯方块的AI编写.
  本系列的文章链接如下:
  1). 需求分析和目标创新
  2). 游戏的基本框架和实现
  这些博文和代码基本是同步的, 并不确定需求是否会改变, 进度是否搁置, 但期翼自己能坚持和实现.

演示&下载:
  该版本依旧较为简陋, 效果如图所示:
  
  其代码下载地址为: http://pan.baidu.com/s/1sjyY7FJ
  下载解压目录结构如下所示:
  
  点击tetris.html, 在浏览器上运行(由于HTML5程序, 最好在Chrome/Firefox上运行).

算法分析:
  核心算法参考了如下博文:
  • 传统规则俄罗斯方块AI技术介绍 
  • 控制台彩色版带AI的『俄罗斯方块』
  本程序也采用改进的Pierre Dellacherie算法(只考虑当前方块).

  其对局面的评估, 采用6项指标:
  1). Landing Height(下落高度): The height where the piece is put (= the height of the column + (the height of the piece / 2))
  2). Rows eliminated(消行数): The number of rows eliminated.
  3). Row Transitions(行变换): The total number of row transitions. A row transition occurs when an empty cell is adjacent to a filled cell on the same row and vice versa.
  4). Column Transitions(列变换): The total number of column transitions. A column transition occurs when an empty cell is adjacent to a filled cell on the same column and vice versa.
  5). Number of Holes(空洞数): A hole is an empty cell that has at least one filled cell above it in the same column.
  6). Well Sums(井数): A well is a succession of empty cells such that their left cells and right cells are both filled.

  对各个指标进行加权求和, 权重系数取自经验值:

1   -4.500158825082766 
2   3.4181268101392694 
3   -3.2178882868487753 
4   -9.348695305445199 
5   -7.899265427351652 
6   -3.3855972247263626

源码解读:
  代码文件结构如图所示:
  
  • tetris_base.js: 公共的数据结构, 包括方块定义和方块池等
  • tetris_ai.js: 具体定义了AI的核心算法和数据结构.
  • tetris_game.js: 是整个程序的展示和驱动.
  这边主要讲讲tetris_ai.js这个代码文件, 里面有三个重要的类, MoveGenerator, Evaluator, AIStrategy.
  MoveGenerator用于生成各个可行落点以及对应的路径线路:

    /*
      * @brief    走法生成器
      */
    function MoveGenerator() {
    }

    MoveGenerator.prototype.generate = function(tetrisUnit, shape) {

        var keymapFunc = function(x, y, idx) {
            return "" + x + ":" + y + ":" + idx;
        }

        var moveMapFunc = function(step) {
            return {x:step.x, y:step.y, idx:step.idx};
        }

        var results = [];

        var boards = tetrisUnit.boards;
        var rownum = tetrisUnit.row;
        var colnum = tetrisUnit.col;
        var shapeArrs = shape.shapes;

        var occupy = {}

        var actionQueues = [];
        actionQueues.push({x:shape.x, y:shape.y, idx:shape.idx, prev:-1});
        occupy[keymapFunc(shape.x, shape.y, shape.idx)] = true;

        var head = 0;
        while ( head < actionQueues.length )  {
            var step = actionQueues[head];

            // 1). 向左移动一步
            var tx = step.x - 1;
            var ty = step.y;
            var tidx = step.idx;
            if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
                var key = keymapFunc(tx, ty, tidx);
                if ( !occupy.hasOwnProperty(key) ) {
                    actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
                    occupy[key] = true;
                }
            }

            // 2). 向右移动一步
            tx = step.x + 1;
            ty = step.y;
            tidx = step.idx;
            if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
                var key = keymapFunc(tx, ty, tidx);
                if ( !occupy.hasOwnProperty(key) ) {
                    actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
                    occupy[key] = true;
                }
            }

            // 3). 旋转一步
            tx = step.x;
            ty = step.y;
            tidx = (step.idx + 1) % 4;
            if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
                var key = keymapFunc(tx, ty, tidx);
                if ( !occupy.hasOwnProperty(key) ) {
                    actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
                    occupy[key] = true;
                }
            }

            // 4). 向下移动一步
            tx = step.x;
            ty = step.y + 1;
            tidx = step.idx;
            if ( tetrisUnit.checkAvailable(tx, ty, shapeArrs[tidx]) ) {
                var key = keymapFunc(tx, ty, tidx);
                if ( !occupy.hasOwnProperty(key) ) {
                    actionQueues.push({x:tx, y:ty, idx:tidx, prev:head});
                    occupy[key] = true;
                }
            } else {

                // *) 若不能向下了, 则为方块的一个终结节点.
                var tmpMoves = [];
                tmpMoves.push(moveMapFunc(step));
                var tprev = step.prev;
                while ( tprev != -1 ) {
                    tmpMoves.push(moveMapFunc(actionQueues[tprev]));
                    tprev = actionQueues[tprev].prev;
                }
                tmpMoves.reverse();

                results.push({last:step, moves:tmpMoves});
            }
            head++;
        }
        return results;

    }

   Evaluator类, 则把之前的评估因素整合起来:

    function Evaluator() {
    }

    Evaluator.prototype.evaluate = function(boards) {
    }

    function PierreDellacherieEvaluator() {
    }

    PierreDellacherieEvaluator.prototype = new Evaluator();
    PierreDellacherieEvaluator.prototype.constructor = PierreDellacherieEvaluator;

    PierreDellacherieEvaluator.prototype.evaluate = function(boards, shape) {
        return (-4.500158825082766) * landingHeight(boards, shape)          // 下落高度
                + (3.4181268101392694) * rowsEliminated(boards, shape)      // 消行个数
                + (-3.2178882868487753) * rowTransitions(boards)            // 行变换
                + (-9.348695305445199) * colTransitions(boards)             // 列变化
                + (-7.899265427351652) * emptyHoles(boards)                 // 空洞个数
                + (-3.3855972247263626) * wellNums(boards);                 // 井数
    }

  AIStrategy整合了落地生成器评估函数, 用于具体决策最优的那个落地点, 以及行动路线.

    function AIStrategy() {
      this.generator = new MoveGenerator();
      this.evalutor = new PierreDellacherieEvaluator();
    }

    /*
     * @brief 作出最优的策略
     * @return  {dest:{x:{x}, y:{y}, idx:{idx}}, [{action_list}]}
     */
     AIStrategy.prototype.makeBestDecision = function(tetrisUnit, shape) {

        var bestMove = null;
        var bestScore = -1000000;

        // 1) 生成所有可行的落点, 以及对应的路径线路
        var allMoves = this.generator.generate(tetrisUnit, shape);

        // 2) 遍历每个可行的落点, 选取最优的局面落点
        for ( var i = 0; i < allMoves.length; i++ ) {
            var step = allMoves[i].last;

            var shapeArrs = shape.shapes;
            var bkBoards = tetrisUnit.applyAction2Data(step.x, step.y, shapeArrs[step.idx]);

            // 2.1) 对每个潜在局面进行评估
            var tscore = this.evalutor.evaluate(bkBoards, {x:step.x, y:step.y, shapeArr:shapeArrs[step.idx]});

            // 2.2) 选取更新最好的落点和路径线路
            if ( bestMove === null || tscore > bestScore ) {
                bestScore = tscore;
                bestMove = allMoves[i].moves;
            }
        }

        // 3) 返回最优可行落点, 及其路径线路
        return {score:bestScore, action_moves:bestMove};

     }	

  注: 该代码注释, 诠释了决策函数的整个流程.

效果评估:
  该AI算法的效果不错, 在演示模式下, 跑了一晚上, 依旧好好的活着. 这也满足了之前想要的需求和功能.

总结:
  该算法的权重系数采用了经验值. 当然了, 也可以借助模拟退火算法来学习参数, 不过由于游戏本身的不确定性/偶然性影响, 收敛的效果并非如预期那么好. 有机会再讲讲.
  无论怎么样, 该AI可以扮演一个合格的"麻烦制造者", 让游戏充满趣味和挑战性. 勿忘初心, let's go!!!

写在最后:
  
如果你觉得这篇文章对你有帮助, 请小小打赏下. 其实我想试试, 看看写博客能否给自己带来一点小小的收益. 无论多少, 都是对楼主一种由衷的肯定.

   

 

posted on 2015-07-05 22:38  mumuxinfei  阅读(8872)  评论(0编辑  收藏  举报

导航