python中的矩阵、多维数组
2. 创建一般的多维数组
import
numpy as np
a
=
np.array([
1
,
2
,
3
], dtype
=
int
)
# 创建1*3维数组 array([1,2,3])
type
(a)
# numpy.ndarray类型
a.shape
# 维数信息(3L,)
a.dtype.name
# 'int32'
a.size
# 元素个数:3
a.itemsize
#每个元素所占用的字节数目:4
b
=
np.array([[
1
,
2
,
3
],[
4
,
5
,
6
]],dtype
=
int
)
# 创建2*3维数组 array([[1,2,3],[4,5,6]])
b.shape
# 维数信息(2L,3L)
b.size
# 元素个数:6
b.itemsize
# 每个元素所占用的字节数目:4
c
=
np.array([[
1
,
2
,
3
],[
4
,
5
,
6
]],dtype
=
'int16'
)
# 创建2*3维数组 array([[1,2,3],[4,5,6]],dtype=int16)
c.shape
# 维数信息(2L,3L)
c.size
# 元素个数:6
c.itemsize
# 每个元素所占用的字节数目:2
c.ndim
# 维数
d
=
np.array([[
1
,
2
,
3
],[
4
,
5
,
6
]],dtype
=
complex
)
# 复数二维数组
d.itemsize
# 每个元素所占用的字节数目:16
d.dtype.name
# 元素类型:'complex128'
3. 创建特殊类型的多维数组
a1
=
np.zeros((
3
,
4
))
# 创建3*4全零二维数组
输出:
array([[
0.
,
0.
,
0.
,
0.
],
[
0.
,
0.
,
0.
,
0.
],
[
0.
,
0.
,
0.
,
0.
]])
a1.dtype.name
# 元素类型:'float64'
a1.size
# 元素个数:12
a1.itemsize
# 每个元素所占用的字节个数:8
a2
=
np.ones((
2
,
3
,
4
), dtype
=
np.int16)
# 创建2*3*4全1三维数组
a2
=
np.ones((
2
,
3
,
4
), dtype
=
'int16'
)
# 创建2*3*4全1三维数组
输出:
array([[[
1
,
1
,
1
,
1
],
[
1
,
1
,
1
,
1
],
[
1
,
1
,
1
,
1
]],
[[
1
,
1
,
1
,
1
],
[
1
,
1
,
1
,
1
],
[
1
,
1
,
1
,
1
]]], dtype
=
int16)
a3
=
np.empty((
2
,
3
))
# 创建2*3的未初始化二维数组
输出:(may vary)
array([[
1.
,
2.
,
3.
],
[
4.
,
5.
,
6.
]])
a4
=
np.arange(
10
,
30
,
5
)
# 初始值10,结束值:30(不包含),步长:5
输出:array([
10
,
15
,
20
,
25
])
a5
=
np.arange(
0
,
2
,
0.3
)
# 初始值0,结束值:2(不包含),步长:0.2
输出:array([
0.
,
0.3
,
0.6
,
0.9
,
1.2
,
1.5
,
1.8
])
from
numpy
import
pi
np.linspace(
0
,
2
,
9
)
# 初始值0,结束值:2(包含),元素个数:9
输出:
array([
0.
,
0.25
,
0.5
,
0.75
,
1.
,
1.25
,
1.5
,
1.75
,
2.
])
x
=
np.linspace(
0
,
2
*
pi,
9
)
输出:
array([
0.
,
0.78539816
,
1.57079633
,
2.35619449
,
3.14159265
,
3.92699082
,
4.71238898
,
5.49778714
,
6.28318531
])
a
=
np.arange(
6
)
输出:
array([
0
,
1
,
2
,
3
,
4
,
5
])
b
=
np.arange(
12
).reshape(
4
,
3
)
输出:
array([[
0
,
1
,
2
],
[
3
,
4
,
5
],
[
6
,
7
,
8
],
[
9
,
10
,
11
]])
c
=
np.arange(
24
).reshape(
2
,
3
,
4
)
输出:
array([[[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
]],
[[
12
,
13
,
14
,
15
],
[
16
,
17
,
18
,
19
],
[
20
,
21
,
22
,
23
]]])
使用numpy.set_printoptions可以设置numpy变量的打印格式
在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例
a
=
np.arange(
4
)
输出:
array([
0
,
1
,
2
,
3
])
b
=
a
*
*
2
输出:
array([
0
,
1
,
4
,
9
])
c
=
10
*
np.sin(a)
输出:
array([
0.
,
8.41470985
,
9.09297427
,
1.41120008
])
n <
35
输出:
array([
True
,
True
,
True
,
True
], dtype
=
bool
)
A
=
np.array([[
1
,
1
],[
0
,
1
]])
B
=
np.array([[
2
,
0
],[
3
,
4
]])
C
=
A
*
B
# 元素点乘
输出:
array([[
2
,
0
],
[
0
,
4
]])
D
=
A.dot(B)
# 矩阵乘法
输出:
array([[
5
,
4
],
[
3
,
4
]])
E
=
np.dot(A,B)
# 矩阵乘法
输出:
array([[
5
,
4
],
[
3
,
4
]])
4. 多维数组的基本操作
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the resulting array corresponds to the more general or precise one (a behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
a
=
np.ones((
2
,
3
),dtype
=
int
)
# int32
b
=
np.random.random((
2
,
3
))
# float64
b
+
=
a
# 正确
a
+
=
b
# 错误
a
=
np.ones(
3
,dtype
=
np.int32)
b
=
np.linspace(
0
,pi,
3
)
c
=
a
+
b
d
=
np.exp(c
*
1j
)
输出:
array([
0.54030231
+
0.84147098j
,
-
0.84147098
+
0.54030231j
,
-
0.54030231
-
0.84147098j
])
d.dtype.name
输出:
'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a
=
np.random.random((
2
,
3
))
a.
sum
()
a.
min
()
a.
max
()
b
=
np.arange(
12
).reshape(
3
,
4
)
输出:
array([[
0
,
1
,
2
,
3
],
[
4
,
5
,
6
,
7
],
[
8
,
9
,
10
,
11
]])
b.
sum
(axis
=
0
)
# 按列求和
输出:
array([
12
,
15
,
18
,
21
])
b.
sum
(axis
=
1
)
# 按行求和
输出:
array([
6
,
22
,
38
])
b.cumsum(axis
=
0
)
# 按列进行元素累加
输出:
array([[
0
,
1
,
2
,
3
],
[
4
,
6
,
8
,
10
],
[
12
,
15
,
18
,
21
]])
b.cumsum(axis
=
1
)
# 按行进行元素累加
输出:
array([[
0
,
1
,
3
,
6
],
[
4
,
9
,
15
,
22
],
[
8
,
17
,
27
,
38
]])
universal functions
B
=
np.arange(
3
)
np.exp(B)
np.sqrt(B)
C
=
np.array([
2.
,
-
1.
,
4.
])
np.add(B,C)
其他的ufunc函数包括:
all, any, apply_along_axis, argmax, argmin, argsort, average, bincount, ceil, clip, conj, corrcoef, cov, cross, cumprod, cumsum, diff, dot, floor,inner, lexsort, max, maximum, mean, median, min, minimum, nonzero, outer, prod, re, round, sort, std, sum, trace, transpose, var,vdot, vectorize, where
5. 数组索引、切片和迭代
a
=
np.arange(
10
)
*
*
3
a[
2
]
a[
2
:
5
]
a[::
-
1
]
# 逆序输出
for
i
in
a:
print
(i
*
*
(
1
/
3.
))
def
f(x,y):
return
10
*
x
+
y
b
=
np.fromfunction(f,(
5
,
4
),dtype
=
int
)
b[
2
,
3
]
b[
0
:
5
,
1
]
b[:,
1
]
b[
1
:
3
,:]
b[
-
1
]
c
=
np.array([[[
0
,
1
,
2
],[
10
,
11
,
12
]],[[
100
,
101
,
102
],[
110
,
111
,
112
]]])
输出:
array([[[
0
,
1
,
2
],
[
10
,
11
,
12
]],
[[
100
,
101
,
102
],
[
110
,
111
,
112
]]])
c.shape
输出:
(
2L
,
2L
,
3L
)
c[
0
,...]
c[
0
,:,:]
输出:
array([[
0
,
1
,
2
],
[
10
,
11
,
12
]])
c[:,:,
2
]
c[...,
2
]
输出:
array([[
2
,
12
],
[
102
,
112
]])
for
row
in
c:
print
(row)
for
element
in
c.flat:
print
(element)
a
=
np.floor(
10
*
np.random.random((
3
,
4
)))
输出:
array([[
3.
,
9.
,
8.
,
4.
],
[
2.
,
1.
,
4.
,
6.
],
[
0.
,
6.
,
0.
,
2.
]])
a.ravel()
输出:
array([
3.
,
9.
,
8.
, ...,
6.
,
0.
,
2.
])
a.reshape(
6
,
2
)
输出:
array([[
3.
,
9.
],
[
8.
,
4.
],
[
2.
,
1.
],
[
4.
,
6.
],
[
0.
,
6.
],
[
0.
,
2.
]])
a.T
输出:
array([[
3.
,
2.
,
0.
],
[
9.
,
1.
,
6.
],
[
8.
,
4.
,
0.
],
[
4.
,
6.
,
2.
]])
a.T.shape
输出:
(
4L
,
3L
)
a.resize((
2
,
6
))
输出:
array([[
3.
,
9.
,
8.
,
4.
,
2.
,
1.
],
[
4.
,
6.
,
0.
,
6.
,
0.
,
2.
]])
a.shape
输出:
(
2L
,
6L
)
a.reshape(
3
,
-
1
)
输出:
array([[
3.
,
9.
,
8.
,
4.
],
[
2.
,
1.
,
4.
,
6.
],
[
0.
,
6.
,
0.
,
2.
]])
详查以下函数:
ndarray.shape, reshape, resize, ravel
6. 组合不同的多维数组
a
=
np.floor(
10
*
np.random.random((
2
,
2
)))
输出:
array([[
5.
,
2.
],
[
6.
,
2.
]])
b
=
np.floor(
10
*
np.random.random((
2
,
2
)))
输出:
array([[
0.
,
2.
],
[
4.
,
1.
]])
np.vstack((a,b))
输出:
array([[
5.
,
2.
],
[
6.
,
2.
],
[
0.
,
2.
],
[
4.
,
1.
]])
np.hstack((a,b))
输出:
array([[
5.
,
2.
,
0.
,
2.
],
[
6.
,
2.
,
4.
,
1.
]])
from
numpy
import
newaxis
np.column_stack((a,b))
输出:
array([[
5.
,
2.
,
0.
,
2.
],
[
6.
,
2.
,
4.
,
1.
]])
a
=
np.array([
4.
,
2.
])
b
=
np.array([
2.
,
8.
])
a[:,newaxis]
输出:
array([[
4.
],
[
2.
]])
b[:,newaxis]
输出:
array([[
2.
],
[
8.
]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
输出:
array([[
4.
,
2.
],
[
2.
,
8.
]])
np.vstack((a[:,newaxis],b[:,newaxis]))
输出:
array([[
4.
],
[
2.
],
[
2.
],
[
8.
]])
np.r_[
1
:
4
,
0
,
4
]
输出:
array([
1
,
2
,
3
,
0
,
4
])
np.c_[np.array([[
1
,
2
,
3
]]),
0
,
0
,
0
,np.array([[
4
,
5
,
6
]])]
输出:
array([[
1
,
2
,
3
,
0
,
0
,
0
,
4
,
5
,
6
]])
详细使用请查询以下函数:
hstack, vstack, column_stack, concatenate, c_, r_
7. 将较大的多维数组分割成较小的多维数组
a = np.floor(10*np.random.random((2,12))) 输出: array([[ 9., 7., 9., ..., 3., 2., 4.], [ 5., 3., 3., ..., 9., 7., 7.]]) np.hsplit(a,3) 输出: [array([[ 9., 7., 9., 6.], [ 5., 3., 3., 1.]]), array([[ 7., 2., 1., 6.], [ 7., 5., 0., 2.]]), array([[ 9., 3., 2., 4.], [ 3., 9., 7., 7.]])] np.hsplit(a,(3,4)) 输出: [array([[ 9., 7., 9.], [ 5., 3., 3.]]), array([[ 6.], [ 1.]]), array([[ 7., 2., 1., ..., 3., 2., 4.], [ 7., 5., 0., ..., 9., 7., 7.]])]
实现类似功能的函数包括:
hsplit,vsplit,array_split
8. 多维数组的复制操作
a = np.arange(12) 输出: array([ 0, 1, 2, ..., 9, 10, 11]) not copy at all b = a b is a # True b.shape = 3,4 a.shape # (3L,4L) def f(x) # Python passes mutable objects as references, so function calls make no copy. print(id(x)) # id是python对象的唯一标识符 id(a) # 111833936L id(b) # 111833936L f(a) # 111833936L 浅复制 c = a.view() c is a # False c.base is a # True c.flags.owndata # False c.shape = 2,6 a.shape # (3L,4L) c[0,4] = 1234 print(a) 输出: array([[ 0, 1, 2, 3], [1234, 5, 6, 7], [ 8, 9, 10, 11]]) s = a[:,1:3] s[:] = 10 print(a) 输出: array([[ 0, 10, 10, 3], [1234, 10, 10, 7], [ 8, 10, 10, 11]]) 深复制 d = a.copy() d is a # False d.base is a # False d[0,0] = 9999 print(a) 输出: array([[ 0, 10, 10, 3], [1234, 10, 10, 7], [ 8, 10, 10, 11]])
numpy基本函数和方法一览
Array Creation
arange, array, copy, empty, empty_like, eye, fromfile, fromfunction, identity, linspace, logspace, mgrid, ogrid, ones, ones_like, r, zeros,zeros_like
Conversions
ndarray.astype, atleast_1d, atleast_2d, atleast_3d, mat
Manipulations
array_split, column_stack, concatenate, diagonal, dsplit, dstack, hsplit, hstack, ndarray.item, newaxis, ravel, repeat, reshape, resize,squeeze, swapaxes, take, transpose, vsplit, vstack
Questionsall, any, nonzero, where
Ordering
argmax, argmin, argsort, max, min, ptp, searchsorted, sort
Operations
choose, compress, cumprod, cumsum, inner, ndarray.fill, imag, prod, put, putmask, real, sum
Basic Statistics
Basic Linear Algebra
cross, dot, outer, linalg.svd, vdot
完整的函数和方法一览表链接:
https://docs.scipy.org/doc/numpy-dev/reference/routines.html#routines
9. 特殊的索引技巧
1 a = np.arange(12)**2 2 输出: 3 array([ 0, 1, 4, ..., 81, 100, 121]) 4 i = np.array([1,1,3,8,5]) 5 a[i] 6 输出: 7 array([ 1, 1, 9, 64, 25]) 8 9 j = np.array([[3,4],[9,7]]) 10 a[j] 11 输出: 12 array([[ 9, 16], 13 [81, 49]]) 14 15 16 palette = np.array([[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]]) 17 image = np.array([[0,1,2,0],[0,3,4,0]]) 18 palette[image] 19 输出: 20 array([[[ 0, 0, 0], 21 [255, 0, 0], 22 [ 0, 255, 0], 23 [ 0, 0, 0]], 24 25 [[ 0, 0, 0], 26 [ 0, 0, 255], 27 [255, 255, 255], 28 [ 0, 0, 0]]]) 29 30 31 i = np.array([[0,1],[1,2]]) 32 j = np.array([[2,1],[3,3]]) 33 a[i,j] 34 输出: 35 array([[ 2, 5], 36 [ 7, 11]]) 37 l = [i,j] 38 a[l] 39 输出: 40 array([[ 2, 5], 41 [ 7, 11]]) 42 43 44 a[i,2] 45 输出: 46 array([[ 2, 6], 47 [ 6, 10]]) 48 49 a[:,j] 50 输出: 51 array([[[ 2, 1], 52 [ 3, 3]], 53 54 [[ 6, 5], 55 [ 7, 7]], 56 57 [[10, 9], 58 [11, 11]]])
s = np.array([i,j]) print(s) array([[[0, 1], [1, 2]], [[2, 1], [3, 3]]]) a[tuple(s)] 输出: array([[ 2, 5], [ 7, 11]]) print(tupe(s)) 输出: (array([[0, 1], [1, 2]]), array([[2, 1], [3, 3]]))
10. 寻找最大值/最小值及其对应索引值
time = np.linspace(20, 145, 5) 输出: array([ 20. , 51.25, 82.5 , 113.75, 145. ]) data = np.sin(np.arange(20)).reshape(5,4) 输出: array([[ 0. , 0.84147098, 0.90929743, 0.14112001], [-0.7568025 , -0.95892427, -0.2794155 , 0.6569866 ], [ 0.98935825, 0.41211849, -0.54402111, -0.99999021], [-0.53657292, 0.42016704, 0.99060736, 0.65028784], [-0.28790332, -0.96139749, -0.75098725, 0.14987721]]) ind = data.argmax(axis=0) 输出: array([2, 0, 3, 1], dtype=int64) time_max = time[ind] 输出: array([ 82.5 , 20. , 113.75, 51.25]) data_max = data[ind, xrange(data.shape[1])] 输出: array([ 0.98935825, 0.84147098, 0.99060736, 0.6569866 ]) np.all(data_max == data.max(axis=0)) 输出: True a = np.arange(5) a[[1,3,4]] = 0 print(a) 输出: array([0, 0, 2, 0, 0])
a = np.arange(5) a[[0,0,2]] = [1,2,3] print(a) 输出: array([2, 1, 3, 3, 4]) a = np.arange(5) a[[0,0,2]] += 1 print(a) 输出: array([1, 1, 3, 3, 4])
a = np.arange(12).reshape(3,4) b = a > 4 输出: array([[False, False, False, False], [False, True, True, True], [ True, True, True, True]], dtype=bool) a[b] 输出: array([ 5, 6, 7, 8, 9, 10, 11]) a[b] = 0 print(a) 输出: array([[0, 1, 2, 3], [4, 0, 0, 0], [0, 0, 0, 0]])
a = np.arange(12).reshape(3,4) b1 = np.array([False,True,True]) b2 = n.array([True,False,True,False]) a[b1,:] 输出: array([[ 4, 5, 6, 7], [ 8, 9, 10, 11]]) a[b1] 输出: array([[ 4, 5, 6, 7], [ 8, 9, 10, 11]]) a[:,b2] 输出: array([[ 0, 2], [ 4, 6], [ 8, 10]]) a[b1,b2] 输出: array([ 4, 10])
11. ix_() function
1 a = np.array([2,3,4,5]) 2 b = np.array([8,5,4]) 3 c = np.array([5,4,6,8,3]) 4 ax,bx,cx = np.ix_(a,b,c) 5 print(ax) # (4L, 1L, 1L) 6 输出: 7 array([[[2]], 8 9 [[3]], 10 11 [[4]], 12 13 [[5]]]) 14 print(bx) # (1L, 3L, 1L) 15 输出: 16 array([[[8], 17 [5], 18 [4]]]) 19 print(cx) # (1L, 1L, 5L) 20 输出: 21 array([[[5, 4, 6, 8, 3]]]) 22 23 24 result = ax + bx*cx 25 输出: 26 array([[[42, 34, 50, 66, 26], 27 [27, 22, 32, 42, 17], 28 [22, 18, 26, 34, 14]], 29 30 [[43, 35, 51, 67, 27], 31 [28, 23, 33, 43, 18], 32 [23, 19, 27, 35, 15]], 33 34 [[44, 36, 52, 68, 28], 35 [29, 24, 34, 44, 19], 36 [24, 20, 28, 36, 16]], 37 38 [[45, 37, 53, 69, 29], 39 [30, 25, 35, 45, 20], 40 [25, 21, 29, 37, 17]]]) 41 42 result[3,2,4] 43 输出:17
12. 线性代数运算
a = np.array([[1.,2.],[3.,4.]]) a.transpose() # 转置 np.linalg.inv(a) # 求逆 u = np.eye(2) # 产生单位矩阵 np.dot(a,a) # 矩阵乘积 np.trace(a) # 求矩阵的迹 y = np.array([5.],[7.]]) np.linalg.solve(a,y) # 求解线性方程组 np.linalg.eig(a) # 特征分解
“Automatic” Reshaping
1 a = np.arange(30) 2 a.shape = 2,-1,3 3 a.shape # (2L, 5L, 3L) 4 print(a) 5 array([[[ 0, 1, 2], 6 [ 3, 4, 5], 7 [ 6, 7, 8], 8 [ 9, 10, 11], 9 [12, 13, 14]], 10 11 [[15, 16, 17], 12 [18, 19, 20], 13 [21, 22, 23], 14 [24, 25, 26], 15 [27, 28, 29]]])
1 x = np.arange(0,10,2) 2 y = np.arange(5) 3 m = np.vstack([x,y]) 4 输出: 5 array([[0, 2, 4, 6, 8], 6 [0, 1, 2, 3, 4]]) 7 n = np.hstack([x,y]) 8 输出: 9 array([0, 2, 4, 6, 8, 0, 1, 2, 3, 4])
13. 矩阵的创建
a = np.array([1,2,3]) a1 = np.mat(a) 输出: matrix([[1, 2, 3]]) type(a1) 输出: numpy.matrixlib.defmatrix.matrix a1.shape 输出: (1L, 3L) a.shape 输出: (3L,) b=np.matrix([1,2,3]) 输出: matrix([[1, 2, 3]]) from numpy import * data1 = mat(zeros((3,3))) data2 = mat(ones((2,4))) data3 = mat(random.rand(2,2)) data4 = mat(random.randint(2,8,size=(2,5))) data5 = mat(eye(2,2,dtype=int))
14. 常见的矩阵运算
1 a1 = mat([1,2]) 2 a2 = mat([[1],[2]]) 3 a3 = a1 * a2 4 print(a3) 5 输出: 6 matrix([[5]]) 7 8 print(a1*2) 9 输出: 10 matrix([[2, 4]]) 11 12 a1 = mat(eye(2,2)*0.5) 13 print(a1.I) 14 输出: 15 matrix([[ 2., 0.], 16 [ 0., 2.]]) 17 18 19 a1 = mat([[1,2],[2,3],[4,2]]) 20 a1.sum(axis=0) 21 输出: 22 matrix([[7, 7]]) 23 a1.sum(axis=1) 24 输出: 25 matrix([[3], 26 [5], 27 [6]]) 28 a1.max() # 求矩阵元素最大值 29 输出: 30 4 31 a1.min() # 求矩阵元素最小值 32 输出: 33 1 34 35 np.max(a1,0) # 求矩阵每列元素最大值 36 输出: 37 matrix([[4, 3]]) 38 np.max(a1,1) # 求矩阵每行元素最大值 39 输出: 40 matrix([[2], 41 [3], 42 [4]]) 43 44 45 a = mat(ones((2,2))) 46 b = mat(eye((2))) 47 c = hstack((a,b)) 48 输出: 49 matrix([[ 1., 1., 1., 0.], 50 [ 1., 1., 0., 1.]]) 51 d = vstack((a,b)) 52 输出: 53 matrix([[ 1., 1.], 54 [ 1., 1.], 55 [ 1., 0.], 56 [ 0., 1.]])
15. 矩阵、数组、列表之间的互相转换
1 aa = [[1,2],[3,4],[5,6]] 2 bb = array(aa) 3 cc = mat(bb) 4 5 cc.getA() # 矩阵转换为数组 6 cc.tolist() # 矩阵转换为列表 7 bb.tolist() # 数组转换为列表 8 9 10 # 当列表为一维时,情况有点特殊 11 aa = [1,2,3,4] 12 bb = array(aa) 13 输出: 14 array([1, 2, 3, 4]) 15 cc = mat(bb) 16 输出: 17 matrix([[1, 2, 3, 4]]) 18 19 cc.tolist() 20 输出: 21 [[1, 2, 3, 4]] 22 23 bb.tolist() 24 输出: 25 [1, 2, 3, 4] 26 27 cc.tolist()[0] 28 输出: 29 [1, 2, 3, 4]