$\newcommand{\R}{\mathbb{R}}$以下我们考虑的是$\R^4$或者$S^4$上的Yang-Mills泛函,它们是共形不变的。

一.自对偶和反自对偶

我们寻找$\R^4$或$S^4$上的一个重要问题:Yang-Mills泛函在何时取得最小值?于是我们考虑$\R^4$上微分形式$*:\wedge^2 \R^4\to \wedge^2 \R^4$,我们有$**=1$。那么定义$F_A^+=\frac{1}{2}(F_A+*F_A)$以及$F_A^-=\frac{1}{2}(F_A-*F_A)$。我们不难验证$*F_A^+=F_A^+$,以及$*F_A^-=-F_A^-$。以及有$\langle F_A^+,F_A^-\rangle=0$,我们相当于给出了$*$的特征值所对应的分解。也就是说$$YM(D_A)=\frac{1}{2}\int_M\langle F_A,F_A\rangle*1=\frac{1}{2}\int_{\R^4}\left(\|F_A^+\|^2+\|F_A^-\|^2\right)dV.$$而注意到$$p_1(E)[M]=\frac{1}{8\pi^2}\int_M \left(\|F_A^+\|^2+\|F_A^-\|^2\right)dV$$为流形的第一Pontrjagin类。这是一个拓扑不变量,不依赖于联络的选取。所以$$YM(D_A)=\left\{\begin{array}{lr}\int_{\R^4}\|F_A^+\|^2 dV-4\pi^2 p_1 & \mbox{当}p_1\le 0\\ \int_{\R^4}\|F_A^-\|^2 dV+4\pi^2 p_1 & \mbox{当}p_1\ge 0\end{array}\right.$$可见当$p_1\le 0$时,在$F_A^+=0$时取得最小值,这也是Yang-Mills泛函的临界点。对于$p_1\ge 0$同理,我们就有如下的定义:

定义 $F_A^+=0\Leftrightarrow F_A=*F_A$称为自对偶的Yang-Mills联络,$F_A^-=0\Leftrightarrow F_A=-*F_A$称为反对偶的Yang-Mills联络

也就是说,我们解出了自对偶或反对偶的Yang-Mills联络(这是一个一阶线性方程),就相当于解出了原来的二阶线性方程$D_A^* F_A=0$。这与调和方程的解和柯西-黎曼方程的解两者关系类似。

注1:四维球面在去除一点的情况下共形于$\R^4$。而由于Yang-Mills泛函在共形下不变,所以在$\R^4$上自对偶解也可以放到$S^4$上变成一个自对偶解(对于反自对偶也类似)。

注2:Uhlenbeck可去奇点定理(1982):如果在去心的球$B\backslash \{0\}$上有一个Yang-Mills联络,且$\int_{B\backslash\{0\}}\|F_A\|^2<+\infty$,那么存在$B$上的Yang-Mills联络$\tilde{A}$,使得$\tilde{A}$是$A$的扩充,且$\int_{B}\|F_{\tilde{A}}\|^2<+\infty$。可参见这里。所以注1的内容由此定理可以得到。

注3:自对偶到反自对偶只需要改变$\R^4$的定向,所以自对偶和反自对偶本质上没有什么区别,所以以下我们只考虑自对偶的情况。$\newcommand{\su}{\mathfrak{su}}$

二.Polyakov和t'Hooft的自对偶Yang-Mills解

Polyakov和t'Hooft的解是$\R^4$上结构群为$SU(2)$的Yang-Mills解,这也是第一个非平凡的Yang-Mills方程的解。不过我们首先要刻画$SU(2)$以及$\su(2)$。为此我们引入“四元数”的概念$\newcommand{\Ha}{\mathbb{H}}$ $$\Ha=\{x=x_0+x_1 i+x_2 j+ x_3 k|x_i\in\R \}.$$满足$i^2=j^2=k^2=-1,ij=k=-ji,jk=i=-kj,ki=j=-ik$.而其共轭为$\bar{x}=x_0-x_1 i-x_2j-x_3k$。模即为$|x|^2=x_0^2+x_1^2+x_2^2+x_3^2=x\cdot \bar{x}$. $\Im x=x_1 i+x_2j+x_3 k$事实上我们引入矩阵$\begin{bmatrix}x_0+i x_1 & x_2+ ix_3 \\ -x_2+i x_3 & x_0-ix_1\end{bmatrix}$可见其加法乘法满足四元数的加法乘法。我们断言如下:

断言 $\su(2)\cong \Im \Ha$。

证明:已知$$\su(2)=\left\{ \left.\begin{bmatrix}ia & b \\ -\bar{b} & -ia\end{bmatrix}\right|a\in \R,b\in \mathbb{C}\right\}.$$可见$\su(2)$有三个基,令$b=b_1+ib_2$,那么有$$I=\begin{bmatrix}i & 0 \\ 0 & -i\end{bmatrix},J=\begin{bmatrix}0 & 1 \\ -1 & 0\end{bmatrix},K=\begin{bmatrix}0 & i \\ i & 0\end{bmatrix}.$$这样显然有$A\in\su(2),A=aI+b_1J+b_2 K$,且满足$[I,J]=2K,[J,K]=2I,[K,I]=2J$.与$i,j,k$的生产关系恰好相同。$\square$

这样在平凡主丛$P=\R^4\times \su(2)$上寻找一个自对偶的Yang-Mills场就相当于找一个取值在$\Im\Ha$且满足自对偶Yang-Mills的微分1-形式。这里我们设$A(x)=\Im(f(x,\bar{x})d\bar{x})$是所需要的微分$1$-形式,其中$f$是$\Ha$值的一个函数。而注意到$$\begin{align*}dx\wedge d\bar{x}&=(dx_1+i dx_2+jdx_3+kdx_4)\wedge (dx_1-i dx_2-jdx_3-kdx_4)\\&=-2[i(dx_1\wedge dx_2+dx_3\wedge dx_4)+j(dx_1\wedge dx_3+dx_4\wedge dx_2)+k(dx_1\wedge dx_4+dx_2\wedge dx_3)]\end{align*}$$这是$\Im \Ha$值的微分$2$-形式。进一步我们有$*(dx\wedge d\bar{x})=dx\wedge d\bar{x}$,即其自对偶。Polyakov指出,当$f(x,\bar{x})=\frac{x}{1+|x|^2}$时,我们有$$A=\Im\left(\frac{x d\bar{x}}{1+|x|^2}\right),F_A=\frac{dx\wedge d\bar{x}}{(1+|x|^2)^2}.$$也就是说他给出了在$P=\R^4\times SU(2)$上的一个非平凡的自对偶解!进一步计算来说$$YM(D_A)=\frac{1}{2}\int_{\R^4}\|F_A\|^2 dV_{\R^4}=12\int_{\R^4}\frac{dx_1 dx_2dx_3 dx_4}{(1+|x|^2)^4}=2\pi^2$$由于Uhlenbeck奇点可去定理可知,它也是$S^4$上自对偶的Yang-Mills解。

更一般地,t'Hooft在Polyakov的基础上构造出来带5个参数的Yang-Mills解$$A(x)=\Im\left(\frac{\lambda^2(x-a)d\bar{x}}{1+\lambda^{-2}|x-a|^2}\right),\lambda\in\R,a\in\Ha.$$
问题是,上述的t'Hooft解是否穷尽了$S^4(1)$上$p_1=\frac{1}{2}$的所有自对偶的Yang-Mills解?Atiyah-Hitchin-singer证明了在$S^4$的平凡主丛$P=S^4\times SU(2)$上所有$k=1$的自对偶Yang-Mills解组成空间(模空间)维数为$5$,由于t'Hooft解的自由度恰为$5$,所以它的确穷尽了所有$p_1=\frac{1}{2}$(这里$k=2p_1=1$)自对偶Yang-Mills解.

接下来的问题是,在底空间$S^4$的平凡主丛上,是否存在非自对偶或反自对偶的Yang-Mills解?Sibner-Sibner-Uhlenbeck在$S^4$上的主丛中已构造出来。

Donaldson用Yang-Mills理论给出更多有趣的结果,比如说在$\R^4$上不微分同胚但是同胚的的微分结构有不可数无穷多个!

posted on 2015-01-22 14:37  御坂01034  阅读(1664)  评论(0编辑  收藏  举报