Java 并发实践 — ConcurrentHashMap 与 CAS
转载 http://www.importnew.com/26035.html
最近在做接口限流时涉及到了一个有意思问题,牵扯出了关于concurrentHashMap的一些用法,以及CAS的一些概念。限流算法很多,我主要就以最简单的计数器法来做引。先抽象化一下需求:统计每个接口访问的次数。一个接口对应一个url,也就是一个字符串,每调用一次对其进行加一处理。可能出现的问题主要有三个:
- 多线程访问,需要选择合适的并发容器
- 分布式下多个实例统计接口流量需要共享内存
- 流量统计应该尽可能不损耗服务器性能
但这次的博客并不是想描述怎么去实现接口限流,而是主要想描述一下遇到的问题,所以,第二点暂时不考虑,即不使用Redis。
说到并发的字符串统计,立即让人联想到的数据结构便是ConcurrentHashpMap<String,Long> urlCounter;
如果你刚刚接触并发可能会写出如代码清单1的代码
代码清单1:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
public class CounterDemo1 { private final Map<String, Long> urlCounter = new ConcurrentHashMap<>(); //接口调用次数+1 public long increase(String url) { Long oldValue = urlCounter.get(url); Long newValue = (oldValue == null ) ? 1L : oldValue + 1 ; urlCounter.put(url, newValue); return newValue; } //获取调用次数 public Long getCount(String url){ return urlCounter.get(url); } public static void main(String[] args) { ExecutorService executor = Executors.newFixedThreadPool( 10 ); final CounterDemo1 counterDemo = new CounterDemo1(); int callTime = 100000 ; final String url = "http://localhost:8080/hello" ; CountDownLatch countDownLatch = new CountDownLatch(callTime); //模拟并发情况下的接口调用统计 for ( int i= 0 ;i<callTime;i++){ executor.execute( new Runnable() { @Override public void run() { counterDemo.increase(url); countDownLatch.countDown(); } }); } try { countDownLatch.await(); } catch (InterruptedException e) { e.printStackTrace(); } executor.shutdown(); //等待所有线程统计完成后输出调用次数 System.out.println( "调用次数:" +counterDemo.getCount(url)); } } console output: 调用次数: 96526 |
都说concurrentHashMap是个线程安全的并发容器,所以没有显示加同步,实际效果呢并不如所愿。
问题就出在increase方法,concurrentHashMap能保证的是每一个操作(put,get,delete…)本身是线程安全的,但是我们的increase方法,对concurrentHashMap的操作是一个组合,先get再put,所以多个线程的操作出现了覆盖。如果对整个increase方法加锁,那么又违背了我们使用并发容器的初衷,因为锁的开销很大。我们有没有方法改善统计方法呢?
代码清单2罗列了concurrentHashMap父接口concurrentMap的一个非常有用但是又常常被忽略的方法。
代码清单2:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
|
/** * Replaces the entry for a key only if currently mapped to a given value. * This is equivalent to * <pre> {@code * if (map.containsKey(key) && Objects.equals(map.get(key), oldValue)) { * map.put(key, newValue); * return true; * } else * return false; * }</pre> * * except that the action is performed atomically. */ boolean replace(K key, V oldValue, V newValue); |
这其实就是一个最典型的CAS操作,except that the action is performed atomically.这句话真是帮了大忙,我们可以保证比较和设置是一个原子操作,当A线程尝试在increase时,旧值被修改的话就回导致replace失效,而我们只需要用一个循环,不断获取最新值,直到成功replace一次,即可完成统计。
改进后的increase方法如下
代码清单3:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
|
public long increase2(String url) { Long oldValue, newValue; while ( true ) { oldValue = urlCounter.get(url); if (oldValue == null ) { newValue = 1l; //初始化成功,退出循环 if (urlCounter.putIfAbsent(url, 1l) == null ) break ; //如果初始化失败,说明其他线程已经初始化过了 } else { newValue = oldValue + 1 ; //+1成功,退出循环 if (urlCounter.replace(url, oldValue, newValue)) break ; //如果+1失败,说明其他线程已经修改过了旧值 } } return newValue; } console output: 调用次数: 100000 |
再次调用后获得了正确的结果,上述方案看上去比较繁琐,因为第一次调用时需要进行一次初始化,所以多了一个判断,也用到了另一个CAS操作putIfAbsent,他的源代码描述如下:
代码清单4:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
|
/** * If the specified key is not already associated * with a value, associate it with the given value. * This is equivalent to * <pre> {@code * if (!map.containsKey(key)) * return map.put(key, value); * else * return map.get(key); * }</pre> * * except that the action is performed atomically. * * @implNote This implementation intentionally re-abstracts the * inappropriate default provided in {@code Map}. * * @param key key with which the specified value is to be associated * @param value value to be associated with the specified key * @return the previous value associated with the specified key, or * {@code null} if there was no mapping for the key. * (A {@code null} return can also indicate that the map * previously associated {@code null} with the key, * if the implementation supports null values.) * @throws UnsupportedOperationException if the {@code put} operation * is not supported by this map * @throws ClassCastException if the class of the specified key or value * prevents it from being stored in this map * @throws NullPointerException if the specified key or value is null, * and this map does not permit null keys or values * @throws IllegalArgumentException if some property of the specified key * or value prevents it from being stored in this map */ V putIfAbsent(K key, V value); |
简单翻译如下:“如果(调用该方法时)key-value 已经存在,则返回那个 value 值。如果调用时 map 里没有找到 key 的 mapping,返回一个 null 值”。值得注意点的一点就是concurrentHashMap的value是不能存在null值的。实际上呢,上述的方案也可以把Long替换成AtomicLong,可以简化实现, ConcurrentHashMap
1
2
3
4
5
6
7
8
9
10
11
|
private AtomicLongMap<String> urlCounter3 = AtomicLongMap.create(); public long increase3(String url) { long newValue = urlCounter3.incrementAndGet(url); return newValue; } public Long getCount3(String url) { return urlCounter3.get(url); } |
看一下他的源码就会发现,其实和代码清单3思路差不多,只不过功能更完善了一点。
和CAS很像的操作,我之前的博客中提到过数据库的乐观锁,用version字段来进行并发控制,其实也是一种compare and swap的思想。