Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

MT【121】耐克数列的估计

 已知{an}满足a1=1,a2=2,an+2an=a2n+1+1a2n+1, 求[a2017]_____


解:容易用累乘法得到an+1=an+1an,nN,两边平方得 a2n+1=a2n+2+1a2n,于是a2n+1a2n2,从而a2n+12n+1,an+12n+1.

又由于a2n+1a2n=2+1a2n, 于是
a2n+1a21=2n+1a21+1a22++1a2n2n+1+13++12n1因此a_{n+1}\le\sqrt{2n+\ln n+2}.
综上\sqrt{2n+1}\le a_{n+1}\le\sqrt{2n+\ln n+2},进而可得
\sqrt{4033}\le a_{2017}\le \sqrt{4034+ln(2016)}


注意到ln(2016)<ln(2^{11})<ln(e^{11})=11,63^2=3969,64^2=4096[a_{2017}]=63


\textbf{注:从上面的推导我们可以到这个数列通项的大致的估计}

\lim\limits_{n\to+\infty}\dfrac{a_n}{\sqrt n}=\sqrt 2.

 

posted @   M.T  阅读(374)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示