hdu 1811(拓扑排序+并查集)
Rank of Tetris
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7616 Accepted Submission(s): 2169
Problem Description
自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球。
为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球Tetris高手排行榜,定时更新,名堂要比福布斯富豪榜还响。关于如何排名,这个不用说都知道是根据Rating从高到低来排,如果两个人具有相同的Rating,那就按这几个人的RP从高到低来排。
终于,Lele要开始行动了,对N个人进行排名。为了方便起见,每个人都已经被编号,分别从0到N-1,并且编号越大,RP就越高。
同时Lele从狗仔队里取得一些(M个)关于Rating的信息。这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B,小于B。
现在Lele并不是让你来帮他制作这个高手榜,他只是想知道,根据这些信息是否能够确定出这个高手榜,是的话就输出"OK"。否则就请你判断出错的原因,到底是因为信息不完全(输出"UNCERTAIN"),还是因为这些信息中包含冲突(输出"CONFLICT")。
注意,如果信息中同时包含冲突且信息不完全,就输出"CONFLICT"。
为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他将制作一个全球Tetris高手排行榜,定时更新,名堂要比福布斯富豪榜还响。关于如何排名,这个不用说都知道是根据Rating从高到低来排,如果两个人具有相同的Rating,那就按这几个人的RP从高到低来排。
终于,Lele要开始行动了,对N个人进行排名。为了方便起见,每个人都已经被编号,分别从0到N-1,并且编号越大,RP就越高。
同时Lele从狗仔队里取得一些(M个)关于Rating的信息。这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B,小于B。
现在Lele并不是让你来帮他制作这个高手榜,他只是想知道,根据这些信息是否能够确定出这个高手榜,是的话就输出"OK"。否则就请你判断出错的原因,到底是因为信息不完全(输出"UNCERTAIN"),还是因为这些信息中包含冲突(输出"CONFLICT")。
注意,如果信息中同时包含冲突且信息不完全,就输出"CONFLICT"。
Input
本题目包含多组测试,请处理到文件结束。
每组测试第一行包含两个整数N,M(0<=N<=10000,0<=M<=20000),分别表示要排名的人数以及得到的关系数。
接下来有M行,分别表示这些关系
每组测试第一行包含两个整数N,M(0<=N<=10000,0<=M<=20000),分别表示要排名的人数以及得到的关系数。
接下来有M行,分别表示这些关系
Output
对于每组测试,在一行里按题目要求输出
Sample Input
3 3 0 > 1 1 < 2 0 > 2 4 4 1 = 2 1 > 3 2 > 0 0 > 1 3 3 1 > 0 1 > 2 2 < 1
Sample Output
OK CONFLICT UNCERTAIN
这题的思路一定要清晰,如果只是考虑拓扑排序的话,那么等号的情况太麻烦,我们无法写出代码。所以转换思维,用并查集将有等号的点联系起来,这样相当于把所有有等号的点化成了一个点!!然后在进行拓扑排序操作,接下来的操作就会容易许多了。
wa了很多遍。。。原因是两个相等的数在拓扑排序的时候相当于减少了一个数,然而我没有减。。。。无语
#include <iostream> #include <stdio.h> #include <stdlib.h> #include<string.h> #include<algorithm> #include<math.h> #include<queue> using namespace std; typedef long long ll; const int maxn=10005,M=20010; int head[maxn],ip,rd[maxn],f[maxn]; int x[M],y[M];char c[M]; struct data { int v,next; }tu[M]; void init(int n) { ip=0; for(int i=0;i<n;i++) f[i]=i,rd[i]=0,head[i]=-1; } void add(int u,int v) { tu[ip].v=v,tu[ip].next=head[u],head[u]=ip++; } int fa(int x) { if(f[x]!=x) f[x]=fa(f[x]); return f[x]; } int s;///用来记录已经拓扑排序好的点的数量 void topu(int n) { queue<int>q; for(int i=0;i<n;i++) { int ii=fa(i);///此处为一个重点,必须要用所有点的父亲节点来表示,否则肯定会出错的 if(!rd[ii]&&f[ii]==i) q.push(i); } bool flag=1; while(!q.empty()) { if(q.size()!=1) flag=0; int tem=q.front(); q.pop(); s++; for(int i=head[tem];i!=-1;i=tu[i].next) { int hh=tu[i].v; rd[hh]--; if(!rd[hh]) q.push(hh); } } if(s<n) printf("CONFLICT\n"); else if(!flag) printf("UNCERTAIN\n"); else printf("OK\n"); } int main() { int n,m; while(cin>>n>>m) { init(n); s=0; for(int i=0;i<m;i++) { scanf("%d %c%d",&x[i],&c[i],&y[i]); if(c[i]=='=') { s++;///这个地方特别重要!因为两个点相等之后拓扑排序的点自然就应当少一个,所以这里应当记录下来!! if(fa(x[i])!=fa(y[i])) f[fa(x[i])]=fa(y[i]); } } int fl=0; for(int i=0;i<m;i++) if(c[i]!='=') { int x1=fa(x[i]),x2=fa(y[i]); if(x1==x2){fl=1;break;} if(c[i]=='>') add(x1,x2),rd[x2]++; else add(x2,x1),rd[x1]++; } if(fl) {printf("CONFLICT\n");continue;} topu(n); } return 0; }
持续更新博客地址:
blog.csdn.net/martinue