[LintCode] Jump Game II
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2
. (Jump 1
step from index 0 to 1, then 3
steps to the last index.)
Solution 1. Recursion without memoization
Similarly with Jump Game, we can use solve this problem recursively with the following formula.
f(n) = min(1 + f(i)) for i satisfies in range [0, n - 1], i + A[i] >= n, f(i) is reachable from A[0];
For f(i) that can't be reached from A[0], it does not update the min.
1 public class Solution { 2 private int min; 3 public int jump(int[] A) { 4 if(A == null || A.length == 0){ 5 return Integer.MAX_VALUE; 6 } 7 min = Integer.MAX_VALUE; 8 helper(A, A.length - 1, 0); 9 return min; 10 } 11 private void helper(int[] A, int idx, int jumps){ 12 if(idx == 0){ 13 min = Math.min(min, jumps); 14 return; 15 } 16 for(int i = 0; i < idx; i++){ 17 if(i + A[i] >= idx){ 18 helper(A, i, jumps + 1); 19 } 20 } 21 } 22 }
Solution 2. Top Down Recursion with Memoization, O(n^2) runtime, O(n) space
1 public class Solution { 2 private int[] T; 3 public int jump(int[] A) { 4 if(A == null || A.length == 0){ 5 return Integer.MAX_VALUE; 6 } 7 T = new int[A.length]; 8 T[0] = 0; 9 for(int i = 1; i < A.length; i++){ 10 T[i] = Integer.MAX_VALUE; 11 } 12 return helper(A, A.length - 1); 13 } 14 private int helper(int[] A, int idx){ 15 if(T[idx] != Integer.MAX_VALUE){ 16 return T[idx]; 17 } 18 for(int i = 0; i < idx; i++){ 19 if(i + A[i] >= idx){ 20 int ret = helper(A, i); 21 if(ret != Integer.MAX_VALUE){ 22 T[idx] = Math.min(T[idx], ret + 1); 23 break; 24 } 25 } 26 } 27 return T[idx]; 28 } 29 }
Solution 3. Bottom Up Dynamic Programming
1 public class Solution { 2 public int jump(int[] A) { 3 if(A == null || A.length == 0){ 4 return Integer.MAX_VALUE; 5 } 6 int[] steps = new int[A.length]; 7 steps[0] = 0; 8 for (int i = 1; i < A.length; i++) { 9 steps[i] = Integer.MAX_VALUE; 10 } 11 for (int i = 1; i < A.length; i++) { 12 for (int j = 0; j < i; j++) { 13 if (steps[j] != Integer.MAX_VALUE && j + A[j] >= i) { 14 steps[i] = Math.min(steps[i], steps[j] + 1); 15 break; 16 } 17 } 18 } 19 return steps[A.length - 1]; 20 } 21 }
In both solution 2 and 3, the highlighted break statement is actually an optimization upon the dynamic programming solution.
It uses a greedy principle: given an index i and we try to find the min jumps needed to get from index 0 to i. Our search index
is from 0 to i - 1. If we can jump directly from 0 to i with 1 jump, then we should simply stop searching the rest 1 to i - 1. Why?
Say from 1 to i - 1, we find another index j that we can jump from j to i with 1 jump, then we need at least another 1 extra jump
to get from 0 to j, which is obviously less optimal than jumping from 0 to i.
This argument only works if we search from left to right. If we search from right to left, then we can't skip any search.
Solution 4. Greedy Algorithm, O(n) runtime.
Stay tuned...
Related Problems
Frog Jump