[LintCode] Stone Game II

There is a stone game.At the beginning of the game the player picks n piles of stones in a circle.

The goal is to merge the stones in one pile observing the following rules:

At each step of the game,the player can merge two adjacent piles to a new pile.
The score is the number of stones in the new pile.
You are to determine the minimum of the total score.

Example

For [1, 4, 4, 1], in the best solution, the total score is 18:

1. Merge second and third piles => [2, 4, 4], score +2
2. Merge the first two piles => [6, 4],score +6
3. Merge the last two piles => [10], score +10

Other two examples:
[1, 1, 1, 1] return 8
[4, 4, 5, 9] return 43

 

Solution.

This is a follow up question of Stone Game I.  

Inaddition to the regular non-circular case A[0], A[1]......A[n- 1], start index must be smaller than end index;

When the n piles of stones are in a circle, start index can be bigger than end index. They are shown as follows.

For n = 5, 

Regular case: A[0], A[1], A[2], A[3], A[4]

circular cases: A[4], A[0], A[1], A[2], A[3]

          A[1], A[2], A[3], A[4], A[0]

                     A[2], A[3], A[4], A[0], A[1]

                     A[3], A[4], A[0], A[1], A[2]

Based on the above observation, start index can be any A[i] for i : [0.... n - 1], length of subproblems can be

[2.......A.length]. 

 

State:

dp[start][end] still represents the min cost of merging A[start....end], end can be >= A.length, indicating a circular wrap.

Function:

end < A.length: dp[start][end] = min{dp[start][k] + dp[k + 1][end] + prefixSum[end + 1] - prefixSum[start]} for all k: [start, end]

end >= A.length: dp[start][end % A.length] = min{dp[start][k % A.length] + dp[(k + 1) % A.length][end % A.length] + prefixSum[A.length]

                          - (prefixSum[(A.length + start) % A.length] - prefixSum[(end + 1) % A.length])}  for all k: [start, end]

The formula in blue is the prefix sum of the circular subproblem of A[start...... end % A.length], we calculate this subtracting the continuous subarray in

middle from the total sum of A.

Initialization:

dp[i][i] = 0;

dp[i][j] = Integer.MAX_VALUE for all i != j;

prefixSum[i]: the sum of the first ith elements of A;

Answer:

In Stone Game I, the answer is simply dp[0][A.length - 1];

In Stone Game II, there are A.length of subproblems that have length A.length; 

so the minimum of these n subproblems is the final minimal cost.

 

Runtime: O(n^2)   (n - 2 + 1) * n, for each fixed length, we have n different start positions;

Space: O(n^2)

 

 1 public class Solution {
 2     public int stoneGame2(int[] A) {
 3         if(A == null || A.length <= 1){
 4             return 0;
 5         }
 6         int[] prefixSum = new int[A.length + 1];
 7         prefixSum[0] = 0;
 8         for(int i = 1; i <= A.length; i++){
 9             prefixSum[i] = prefixSum[i - 1] + A[i - 1];
10         }
11         int[][] dp = new int[A.length][A.length];
12         for(int i = 0; i < A.length; i++){
13             for(int j = 0; j < A.length; j++){
14                 dp[i][j] = Integer.MAX_VALUE;
15             }
16         }
17         for(int i = 0; i < A.length; i++){
18             dp[i][i] = 0;
19         }
20         for(int len = 2; len <= A.length; len++){
21             for(int start = 0; start < A.length; start++){
22                 int end = start + len - 1;
23                 for(int k = start; k < end; k++){
24                     if(end < A.length){
25                         dp[start][end] = Math.min(dp[start][end], 
26                         dp[start][k] 
27                         + dp[k + 1][end] 
28                         + prefixSum[end + 1] - prefixSum[start]);                        
29                     }
30                     else{
31                         dp[start][end % A.length] = Math.min(dp[start][end % A.length], 
32                         dp[start][k % A.length] 
33                         + dp[(k + 1) % A.length][end % A.length] 
34                         + prefixSum[A.length]
35                         - (prefixSum[(A.length + start) % A.length] - prefixSum[(end + 1) % A.length] ));
36                     }
37                 }
38             }
39         }
40         int min = Integer.MAX_VALUE;
41         for(int i = 0; i < A.length; i++){
42             min = Math.min(min, dp[i][(A.length - 1 + i) % A.length]);
43         }
44         return min;
45     }
46 }

 

Related Problems

Stone Game

posted @ 2017-06-06 14:01  Review->Improve  阅读(2195)  评论(0编辑  收藏  举报