48484
证明:由$f$可积的定义知,对任意的$\varepsilon > 0$,存在$N$,使得\[\int_a^b {\left| {f\left( x \right) - {{\left[ f \right]}_N}\left( x \right)} \right|dx} < \frac{\varepsilon }{3}\]对于函数${{{\left[ f \right]}_N}}$,由$\bf{Lusin定理}$知,对任给$\delta = \frac{\varepsilon }{{3N + 1}} > 0$,存在闭集${E_\delta } \subset \left[ {a,b} \right]$,以及存在$\left[ {a,b} \right]$上连续函数$\varphi :$$\left| {\varphi \left( x \right)} \right| \le N$,使得$m\left( {{E_\delta }} \right) < \delta $,且当$x \in \left[ {a,b} \right]\backslash {E_\delta }$时,$\varphi \left( x \right) = {\left[ f \right]_N}\left( x \right)$,于是\[\int_a^b {\left| {{{\left[ f \right]}_N}\left( x \right) - \varphi \left( x \right)} \right|dx} = \int_{{E_\delta }} {\left| {{{\left[ f \right]}_N}\left( x \right) - \varphi \left( x \right)} \right|dx} \le \frac{{2\varepsilon N}}{{3N + 1}} < \frac{{2\varepsilon }}{3}\]所以有\[\int_a^b {\left| {f\left( x \right) - \varphi \left( x \right)} \right|dx} \le \int_a^b {\left| {f\left( x \right) - {{\left[ f \right]}_N}\left( x \right)} \right|dx} + \int_a^b {\left| {{{\left[ f \right]}_N}\left( x \right) - \varphi \left( x \right)} \right|dx} < \varepsilon \]