265985
$\bf证明$ 由于$m\left( {E\left( {{f_n} \nrightarrow f} \right)} \right) = 0$,则我们不妨设$\left\{ {{f_n}\left( x \right)} \right\}$处处收敛于$f(x)$,此时\[E = \bigcup\limits_{m = 1}^\infty {\bigcap\limits_{n = m}^\infty {E\left( {\left| {{f_n} - f} \right| < \frac{1}{k}} \right)} } ,k \in {N_ + }\]记\[{B_{m,k}} = \bigcap\limits_{n = m}^\infty {{E_{n,k}}} = E\left( {\left| {{f_n} - f} \right| < \frac{1}{k},n \ge m} \right)\]其中${E_{n,k}} = E\left( {\left| {{f_n} - f} \right| < \frac{1}{k}} \right)$,则对于固定的$k$,${B_{m,k}}$是单调递增的集合列,并且$E = \bigcup\limits_{m = 1}^\infty {{B_{m,k}}} $,所以我们有$m\left( E \right) = \lim \limits_{m \to \infty } m\left( {{B_{m,k}}} \right)$,而$m\left( E \right) < \infty $,则对任给$\delta > 0$,存在${n_k}\left( { > {n_{k - 1}}} \right)$,使得\[m\left( E \right) - m\left( {{B_{{n_k},k}}} \right) < \frac{\delta }{{{2^k}}}\]
令\[F = \bigcap\limits_{k = 1}^\infty {{B_{{n_k},k}}} = E\left( {\left| {{f_n} - f} \right| < \frac{1}{k},n \ge {n_k}} \right)\]
则我们有\[m\left( {E\backslash F} \right) = m\left( {\bigcup\limits_{k = 1}^\infty {\left( {E\backslash {B_{{n_k},k}}} \right)} } \right) \le \sum\limits_{k = 1}^\infty {m\left( {E\backslash {B_{{n_k},k}}} \right)} < \delta \]
以及对任给的$\varepsilon > 0$,存在${k_0} > \frac{1}{\varepsilon }$,使得当$n \ge {n_{{k_0}}}$时,对任意的$x \in F$,有\[\left| {{f_n}\left( x \right) - f\left( x \right)} \right| < \frac{1}{{{k_0}}} < \varepsilon \]
所以$\left\{ {{f_n}\left( x \right)} \right\}$在$F$上一致收敛于$f(x)$