6265689

证明:由于${A^2} = A$,且$r\left( A \right) = r$,则存在可逆阵$P$,使得

\[{P^{ - 1}}AP = \left( {\begin{array}{*{20}{c}}
{{E_r}}&{}\\
{}&0
\end{array}} \right)\]

即${P^{ - 1}}AP = \left( {\begin{array}{*{20}{c}}
{{E_r}}&{}\\
{}&0
\end{array}} \right)$,令$B = P\left( {\begin{array}{*{20}{c}}
{{0_r}}&{}&{}\\
{}&J&{}\\
{}&{}&0
\end{array}} \right){P^{ - 1}}$,则命题得证

其中$J$为$s$阶若当块,对角线全为$0$

$\bf注:$若$A$的零化多项式无重根,则$A$可相似对角化

 

 

posted on 2014-05-18 11:42  一阴一阳之谓道  阅读(189)  评论(0编辑  收藏  举报

导航