6265689
证明:由于${A^2} = A$,且$r\left( A \right) = r$,则存在可逆阵$P$,使得
\[{P^{ - 1}}AP = \left( {\begin{array}{*{20}{c}}
{{E_r}}&{}\\
{}&0
\end{array}} \right)\]
即${P^{ - 1}}AP = \left( {\begin{array}{*{20}{c}}
{{E_r}}&{}\\
{}&0
\end{array}} \right)$,令$B = P\left( {\begin{array}{*{20}{c}}
{{0_r}}&{}&{}\\
{}&J&{}\\
{}&{}&0
\end{array}} \right){P^{ - 1}}$,则命题得证
其中$J$为$s$阶若当块,对角线全为$0$
$\bf注:$若$A$的零化多项式无重根,则$A$可相似对角化