599
证明:由于$\lim \limits_{x \to \begin{array}{*{20}{c}}{{\rm{ + }}\infty }\end{array}} f\left( x \right){\rm{ = }}0$,则对任给的$\varepsilon > 0$,存在$M>0$,使得当$x > M$时,有$\left| {f\left( x \right)} \right| < \varepsilon $
特别地,取$\varepsilon = 1$,则当$x > M$时,有$\left| {f\left( x \right)} \right| < 1$,于是有${f^2}\left( x \right) \le \left| {f\left( x \right)} \right|$
又知$\int_a^{ + \infty } {f\left( x \right)dx} $绝对收敛,从而由比较判别法知$\int_a^{ + \infty } {{f^2}\left( x \right)dx} $收敛