26566
$\bf命题1:$设$f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$,令\[{f_n}\left( x \right) = n\left[ {f\left( {x + \frac{1}{n}} \right) - f\left( x \right)} \right]\]
证明:对任意$x \in \left[ {a,b} \right] \subset \left( { - \infty , + \infty } \right)$,有${f_n}\left( x \right)$一致收敛于$f'\left( x \right)$
证明:由$f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$知,$f'\left( x \right) \in C\left[ {a,b}
\right]$,则
由$\bf{Cantor定理}$知,$f'\left( x \right)$在$\left[ {a,b} \right]$上一致连续,即对任意$\varepsilon > 0$,存在$\delta > 0$,使得对任意的$x,y \in \left[ {a,b} \right]$满足$\left| {x - y} \right| < \delta $时,有\[\left| {f'\left( x \right) - f'\left( y \right)} \right| < \varepsilon \]
由微分中值定理知,存在${\xi _n} \in \left( {x,x + \frac{1}{n}} \right)$,使得
\[{f_n}\left( x \right) = nf'\left( {{\xi _n}} \right)\frac{1}{n} = f'\left( {{\xi _n}} \right)\]
取$N = \frac{1}{\delta }$,则当$n > N$时,对任意$x \in \left[ {a,b} \right]$,有\[\left| {x - {\xi _n}} \right| < \delta \]
从而有\[\left| {f'\left( x \right) - f'\left( {{\xi _n}} \right)} \right| < \varepsilon \]
所以对任意$\varepsilon > 0$,存在$N = \frac{1}{\delta } > 0$,使得当$n > N$时,对任意$x \in \left[ {a,b} \right]$,有\[\left| {f'\left( x \right) - {f_n}\left( x \right)} \right|{\rm{ = }}\left| {f'\left( x \right) - f'\left( {{\xi _n}} \right)} \right| < \varepsilon \]
从而由函数列一致收敛的定义即证
$\bf注1:$$N$的取值由不等式${\left| {x - {\xi _n}} \right| < \delta }$放缩得到
$\bf注2:$由于$f'\left( x \right) \in C\left( { - \infty , + \infty } \right)$,所以\[ \lim \limits_{n \to \infty } {f_n}\left( x \right) = \mathop {\lim }\limits_{n \to \infty } \frac{{f\left( {x + \frac{1}{n}} \right) - f\left( x \right)}}{{\frac{1}{n}}} = f'\left( x \right)\]
即${f_n}\left( x \right)$在$\left( { - \infty , + \infty } \right)$上处处收敛于$f'\left( x \right)$