9625

$\bf命题2:$设$A$,$B$均为实对称半正定阵,则$A$,$B$可同时合同对角化

证明:由$A,B$半正定知$A+B$半正定,则存在可逆阵$P$,使得
\[{P^T}\left( {A + B} \right)P = diag\left( {{E_r},0} \right)\]
设\[{P^T}AP = \left( {\begin{array}{*{20}{c}}
{{A_1}}&{{A_2}}\\
{{A_2}^\prime }&{{A_3}}
\end{array}} \right)\]
则\[{P^T}BP = \left( {\begin{array}{*{20}{c}}
{{E_r} - {A_1}}&{ - {A_2}}\\
{ - {A_2}^\prime }&{ - {A_3}}
\end{array}} \right)\]
由于${ - {A_3}}$半正定且${ {A_3}}$半正定,故${{A_3} = 0}$,从而可知${{A_2} = 0}$

又由${{A_1}}$半正定知,存在正交阵$Q$,使得
\[{Q^T}{A_1}Q = diag\left( {{\lambda _1}, \cdots ,{\lambda _r}} \right) = C\]
从而可知
\[diag\left( {{Q^T},{E_{n - r}}} \right){P^T}APdiag\left( {Q,{E_{n - r}}} \right) = diag\left( {C,0} \right)\]
\[diag\left( {{Q^T},{E_{n - r}}} \right){P^T}BPdiag\left( {Q,{E_{n - r}}} \right) = diag\left( {{E_r} - C,0} \right)\]
令$R = Pdiag\left( {Q,{E_{n - r}}} \right)$,则结论成立

$\bf注1:$

posted on 2014-05-04 11:34  一阴一阳之谓道  阅读(188)  评论(0编辑  收藏  举报

导航