七月在线机器学习项目

一、音乐推荐

 1、传统的方式:基于suprise 协同过滤(各种版本)、SVD、矩阵分解

 2、基于word2vec,用每个歌单中的song_id,作为一个样本,训练song2vec向量,进而求取相似歌曲,

  用户兴趣推荐,根据用户喜欢的歌曲,将时间轴权重,歌曲热度权重叠加到song2vec相似歌曲的相似度上加权,之后排序,进而推荐

3、tensorlow实现矩阵分解推荐系统

4、spark实现batch数据的协同过滤推荐

5、spark实现基于ALS的推荐系统

二、金融反欺诈检测

 

三、电商点击转化率

posted @ 2018-03-26 17:50  lxwlxw  阅读(555)  评论(0编辑  收藏  举报