吴恩达机器学习

一、线性回归

基本的概念:训练集(积累知识)、学习策略(预测函数)、代价函数(均方差,logist loss)(评估)、优化,训练最优的模型参数

欠你和和过拟合:

正则化:惩罚参数,变相减少特征

 

二、逻辑回归

批量梯度下降:求一次参数,遍历所有的样本

随机梯度下降:每一个样本,求一次参数

多分类:one VS all:构建Theta矩阵,大小 :(类别数,theta),预测,根据每一输入向量,属于某个类别的概率最大,sigmod计算概率

 

三、神经网络

多层的线性回归,是一个多个逻辑回归问题

1、不需要扩大输入特征,解决非线性分类问题,非线性是变量x含有次幂

 

2、多层的隐含层,也就意味着特征的扩展,每一层,都是模型参数的一次优化

四、SVM

代价函数:逻辑回归的代价函数拉直,当y = 1 ,希望theta*x >>1 ,才能使代价函数最小,当y=0 希望theta*x << -1 ,才能使代价函数最小

最大距间隔

核函数:将原来的特征向量转化为,样本点和标记点的相似度,作为特征,高斯函数,线性函数;

模型重要参数:C 、 deta

C 和lamda是相反的作用,高方差,增大C

 

五、K-means聚类

初始化:循环100次,随机初始化初始簇的中心值,选择失真函数最小的一组初始化值

K值的选取:肘部原则,更多的是根据后续具体的问题的目的,

优化:失真函数

二分K-means:进行多次2-means聚类,根据每一次的失真函数的值的大小,选择小的一边,继续分割,

六、特征降维

七、异常检测

找到一个概率模型,

高斯概率模型,样本集,最大似然估计,得到均值和方差,

新的样本的高斯概率如果小于theta,很小的值,则异常

八、推荐系统

基于内容的推荐,商品的内容,就是特征变量 x

协同过滤:用户的特征 theta,商品的特征x, y是用户对商品的打分,成本函数是均方差,入nn一样,theta、x初始化,后迭代训练

低质矩阵分解:把打分矩阵,分解为两个矩阵的乘

 

posted @ 2018-03-26 10:57  lxwlxw  阅读(155)  评论(0编辑  收藏  举报