Alice is exploring the wonderland, suddenly she fell into a hole, when she woke up, she found there are b - a + 1 treasures labled a from b in front of her.
Alice was very excited but unfortunately not all of the treasures are real, some are fake.
Now we know a treasure labled n is real if and only if [n/1] + [n/2] + ... + [n/k] + ... is even.
Now given 2 integers a and b, your job is to calculate how many real treasures are there.
Input
The input contains multiple cases, each case contains two integers a and b (0 <= a <= b <= 263-1) seperated by a single space. Proceed to the end of file.
Output
Output the total number of real treasure.
Sample Input
0 2 0 10
Sample Output
1 6
Author: QU, Zhe
Contest: ZOJ Monthly, July 2012
题目大意:给你一个区间。问你这个区间内的特殊数有多少。特殊数n的定义是n/1+n/2+n/3+....+n/n为偶数就可以。
解题思路:不要左想右想,直接打表看奇数偶数的特性,開始打了20。发现是1个0。3个1,5个0。7个1。。。。
然后非常喜悦,打了100表,发现真的是这个规律,就像哥伦布发现新大陆一样。于是開始默默地推公式。
。。
发现不是非常好推,我把这个结论告诉了yb,以为他有简单的方法解决一下,最后我还是自己拿了纸和笔到旁边推公式去了。
能够找规律。区间落点各自是1 2^2 3^2 4^2 5 ^2
1.直接开根号,看他们在哪个区间。
2.假设他们在一个区间。直接求和就可以。
3.看他们落在奇数点还是偶数点。然后分情况讨论。
4.推0个数的求和个数公式。
好吧,我又坑了。
第一发wa是由于从0開始计数的,而我是从1開始计数的。所以a,b都要加1,再计算。然后还是wa了,就在看自己公式哪里推错了,,,,实际上是一个地方爆了long long。唉,做题不慎重啊。
。。。
题目地址:Treasure Hunt IV
AC代码:
#include<iostream> #include<cstdio> #include<cstring> #include<string> #include<cmath> #include<algorithm> using namespace std; int main() { unsigned long long a,b; unsigned long long p1,p2; //printf("%lld\n",(1<<63)-1); unsigned long long ans,t1,t2; while(cin>>a>>b) { a++,b++; p1=sqrt(a+0.5); p2=sqrt(b+0.5); if(p1==p2) //假设他们落到了同一个地方 { if(p1&1) { if(p1*p1==a) printf("1\n"); else printf("0\n"); } else { if(p1*p1==a) cout<<b-a<<endl; else cout<<b-a+1<<endl; } continue; } ans=0; if(p1&1) //ok { if(p1*p1==a) ans+=1; t1=p1+2; } else { if(p1*p1==a) t1=p1+1; else { ans+=(p1+1)*(p1+1)-a+1; //就是这个地方爆的long long啊,巨坑。。 t1=p1+3; } } if(p2&1) { t2=p2; } else { ans+=b-p2*p2; t2=p2-1; } t1=(t1+1)/2,t2=(t2+1)/2,t1--; //以下是用公式计算中间的0,个数为1,5,9,13, //通项为4n-3,求和公式为(2n-1)*n if(t2>=t1) ans=ans+(2*t2-1)*t2-(2*t1-1)*t1; cout<<ans<<endl; } return 0; } /* 0 11538571374624767 5769285672726615 123 321 87 */