监听器初始化Job、JobTracker相应TaskTracker心跳、调度器分配task源码级分析

  JobTracker和TaskTracker分别启动之后(JobTracker启动流程源码级分析TaskTracker启动过程源码级分析),taskTracker会通过心跳与JobTracker通信,并获取分配它的任务。用户将作业提交到JobTracker之后,放入相应的数据结构中,静等被分配。mapreduce job提交流程源码级分析(三)这篇文章已经分析了用户提交作业的最后步骤,主要是构造作业对应的JobInProgress并加入jobs,告知所有的JobInProgressListener。

  默认调度器创建了两个Listener:JobQueueJobInProgressListener和EagerTaskInitializationListener,用户提交的作业被封装成JobInProgress job加入这两个Listener。

  一、JobQueueJobInProgressListener.jobAdded(job)会将此JobInProgress放入Map<JobSchedulingInfo, JobInProgress> jobQueue中。 

  二、EagerTaskInitializationListener.jobAdded(job)会将此JobInProgress放入List<JobInProgress> jobInitQueue中,然后调用resortInitQueue()对这个列表进行排序先按优先级相同则按开始时间;然后唤醒在此对象监视器上等待的所有线程jobInitQueue.notifyAll()。EagerTaskInitializationListener.start()方法已经在调度器start时运行,会创建一个线程JobInitManager implements Runnable,它的run方法主要是监控jobInitQueue列表,一旦发现不为空就获取第一个JobInProgress,然后创建一个InitJob implements Runnable初始化线程并放入线程池ExecutorService threadPool(这个线程池在构建EagerTaskInitializationListener对象时由构造方法实现),InitJob线程的run方法就一句话ttm.initJob(job),调用的是JobTracker的initJob(job)方法对JIP进行初始化,实际调用JobInProgress.initTasks()对job进行初始化,initTasks()方法代码如下:

  1  /**
  2    * Construct the splits, etc.  This is invoked from an async
  3    * thread so that split-computation doesn't block anyone.
  4    */
  5   //任务Task分两种: MapTask 和reduceTask,它们的管理对象都是TaskInProgress 。
  6   public synchronized void initTasks() 
  7   throws IOException, KillInterruptedException, UnknownHostException {
  8     if (tasksInited || isComplete()) {
  9       return;
 10     }
 11     synchronized(jobInitKillStatus){
 12       if(jobInitKillStatus.killed || jobInitKillStatus.initStarted) {
 13         return;
 14       }
 15       jobInitKillStatus.initStarted = true;
 16     }
 17 
 18     LOG.info("Initializing " + jobId);
 19     final long startTimeFinal = this.startTime;
 20     // log job info as the user running the job
 21     try {
 22     userUGI.doAs(new PrivilegedExceptionAction<Object>() {
 23       @Override
 24       public Object run() throws Exception {
 25         JobHistory.JobInfo.logSubmitted(getJobID(), conf, jobFile, 
 26             startTimeFinal, hasRestarted());
 27         return null;
 28       }
 29     });
 30     } catch(InterruptedException ie) {
 31       throw new IOException(ie);
 32     }
 33     
 34     // log the job priority
 35     setPriority(this.priority);
 36     
 37     //
 38     // generate security keys needed by Tasks
 39     //
 40     generateAndStoreTokens();
 41     
 42     //
 43     // read input splits and create a map per a split
 44     //
 45     TaskSplitMetaInfo[] splits = createSplits(jobId);
 46     if (numMapTasks != splits.length) {
 47       throw new IOException("Number of maps in JobConf doesn't match number of " +
 48               "recieved splits for job " + jobId + "! " +
 49               "numMapTasks=" + numMapTasks + ", #splits=" + splits.length);
 50     }
 51     numMapTasks = splits.length;//map task的个数就是input split的个数
 52 
 53     // Sanity check the locations so we don't create/initialize unnecessary tasks
 54     for (TaskSplitMetaInfo split : splits) {
 55       NetUtils.verifyHostnames(split.getLocations());
 56     }
 57     
 58     jobtracker.getInstrumentation().addWaitingMaps(getJobID(), numMapTasks);
 59     jobtracker.getInstrumentation().addWaitingReduces(getJobID(), numReduceTasks);
 60     this.queueMetrics.addWaitingMaps(getJobID(), numMapTasks);
 61     this.queueMetrics.addWaitingReduces(getJobID(), numReduceTasks);
 62 
 63     maps = new TaskInProgress[numMapTasks]; //为每个map tasks生成一个TaskInProgress来处理一个input split 
 64     for(int i=0; i < numMapTasks; ++i) {
 65       inputLength += splits[i].getInputDataLength();
 66       maps[i] = new TaskInProgress(jobId, jobFile,         //类型是map task
 67                                    splits[i], 
 68                                    jobtracker, conf, this, i, numSlotsPerMap);
 69     }
 70     LOG.info("Input size for job " + jobId + " = " + inputLength
 71         + ". Number of splits = " + splits.length);
 72 
 73     // Set localityWaitFactor before creating cache
 74     localityWaitFactor = 
 75       conf.getFloat(LOCALITY_WAIT_FACTOR, DEFAULT_LOCALITY_WAIT_FACTOR);
 76     /* 对于map task,将其放入nonRunningMapCache,是一个Map<Node,List<TaskInProgress>>,也即对于map task来讲,其将会被分配到其input
 77     split所在的Node上。在此,Node代表一个datanode或者机架或者数据中  心。nonRunningMapCache将在JobTracker向TaskTracker分配map task的 时候使用。
 78     */ 
 79     if (numMapTasks > 0) { 
 80         //通过createCache()方法为这些TaskInProgress对象产生一个未执行任务的Map缓存nonRunningMapCache。
 81         //slave端的TaskTracker向master发送心跳时,就可以直接从这个cache中取任务去执行。
 82       nonRunningMapCache = createCache(splits, maxLevel);
 83     }
 84         
 85     // set the launch time
 86     this.launchTime = jobtracker.getClock().getTime();
 87 
 88     //
 89     // Create reduce tasks
 90     //
 91     //其次JobInProgress会创建Reduce的监控对象,这个比较简单,根据JobConf里指定的Reduce数目创建,
 92     //缺省只创建1个Reduce任务。监控和调度Reduce任务的是TaskInProgress类,不过构造方法有所不同,
 93     //TaskInProgress会根据不同参数分别创建具体的MapTask或者ReduceTask。同样地,
 94     //initTasks()也会通过createCache()方法产生nonRunningReduceCache成员。
 95     this.reduces = new TaskInProgress[numReduceTasks];
 96     for (int i = 0; i < numReduceTasks; i++) {
 97       reduces[i] = new TaskInProgress(jobId, jobFile,     //这是reduce task
 98                                       numMapTasks, i, 
 99                                       jobtracker, conf, this, numSlotsPerReduce);
100       /*reducetask放入nonRunningReduces,其将在JobTracker向TaskTracker分配reduce task的时候使用。*/ 
101       nonRunningReduces.add(reduces[i]);
102     }
103 
104     // Calculate the minimum number of maps to be complete before 
105     // we should start scheduling reduces
106     completedMapsForReduceSlowstart = 
107       (int)Math.ceil(
108           (conf.getFloat("mapred.reduce.slowstart.completed.maps", 
109                          DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART) * 
110            numMapTasks));
111     
112     // ... use the same for estimating the total output of all maps
113     resourceEstimator.setThreshhold(completedMapsForReduceSlowstart);
114     
115     // create cleanup two cleanup tips, one map and one reduce.
116   //创建两个cleanup task,一个用来清理map,一个用来清理reduce. 
117     cleanup = new TaskInProgress[2];
118 
119     // cleanup map tip. This map doesn't use any splits. Just assign an empty
120     // split.
121     TaskSplitMetaInfo emptySplit = JobSplit.EMPTY_TASK_SPLIT;
122     cleanup[0] = new TaskInProgress(jobId, jobFile, emptySplit, 
123             jobtracker, conf, this, numMapTasks, 1);
124     cleanup[0].setJobCleanupTask();
125 
126     // cleanup reduce tip.
127     cleanup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,
128                        numReduceTasks, jobtracker, conf, this, 1);
129     cleanup[1].setJobCleanupTask();
130 
131     // create two setup tips, one map and one reduce.
132     //创建两个初始化 task,一个初始化map,一个初始化reduce. 
133     setup = new TaskInProgress[2];
134 
135     // setup map tip. This map doesn't use any split. Just assign an empty
136     // split.
137     setup[0] = new TaskInProgress(jobId, jobFile, emptySplit, 
138             jobtracker, conf, this, numMapTasks + 1, 1);
139     setup[0].setJobSetupTask();
140 
141     // setup reduce tip.
142     setup[1] = new TaskInProgress(jobId, jobFile, numMapTasks,
143                        numReduceTasks + 1, jobtracker, conf, this, 1);
144     setup[1].setJobSetupTask();
145     
146     synchronized(jobInitKillStatus){
147       jobInitKillStatus.initDone = true;
148       if(jobInitKillStatus.killed) {
149         throw new KillInterruptedException("Job " + jobId + " killed in init");
150       }
151     }
152     //JobInProgress创建完TaskInProgress后,最后构造JobStatus并记录job正在执行中,
153     //然后再调用JobHistory.JobInfo.logInited()记录job的执行日志。
154     tasksInited = true;
155     JobHistory.JobInfo.logInited(profile.getJobID(), this.launchTime, 
156                                  numMapTasks, numReduceTasks);
157     
158    // Log the number of map and reduce tasks
159    LOG.info("Job " + jobId + " initialized successfully with " + numMapTasks
160             + " map tasks and " + numReduceTasks + " reduce tasks.");
161   }
View Code

   initTasks方法的主要工作是读取上传的分片信息,检查分片的有效性及要和配置文件中的numMapTasks相等,然后创建numMapTasks个TaskInProgress作为Map Task。通过createCache方法,将没有找到对应分片的map放入nonLocalMaps中,获取分片所在节点,然后将节点与其上分片对应的map对应起来,放入Map<Node, List<TaskInProgress>> cache之中,需要注意的是还会根据设定的网络深度存储父节点(可能存在多个子节点)下所有子节点包含的map,从这可以看出这里实现了本地化,将这个cache赋值给nonRunningMapCache表示还未运行的map。然后是创建reduce task,创建numReduceTasks个TaskInProgress,放入nonRunningReduces。这里需要注意:map和reduce都是TaskInProgress那以后咋区分呢?其实这两种的构造函数是不同的,判断两种类型的task的根据就是splitInfo有无设置,map task对splitInfo进行了设置,而reduce task则设splitInfo=null。然后是获取map task完成的最小数量才可以调度reduce task。创建两个清理task:cleanup = new TaskInProgress[2],一个用来清理map task(这个也是一个map task),一个用来清理reduce task(这个也是一个reduce task),TaskInProgress构造函数的task个数参数都为1,map的splitInfo是JobSplit.EMPTY_TASK_SPLIT;创建两个初始化task:setup = new TaskInProgress[2],一个用来初始化map task(这个也是一个map task),一个用来初始化reduce task(这个也是一个reduce task),这4个TaskInProgress都会设置对应的标记为来表示类型。最后是设置一个标记位来表示完成初始化工作。

  这样EagerTaskInitializationListener在JobTracker端就完成了对Job的初始化工作,所有task等待taskTracker的心跳被调度。

  来看TaskTracker通过心跳提交状态的方法JobTracker.heartbeat,该方法代码:

  1   /**
  2    * The periodic heartbeat mechanism between the {@link TaskTracker} and
  3    * the {@link JobTracker}.
  4    * 
  5    * The {@link JobTracker} processes the status information sent by the 
  6    * {@link TaskTracker} and responds with instructions to start/stop 
  7    * tasks or jobs, and also 'reset' instructions during contingencies. 
  8    */
  9   public synchronized HeartbeatResponse heartbeat(TaskTrackerStatus status, 
 10                                                   boolean restarted,
 11                                                   boolean initialContact,
 12                                                   boolean acceptNewTasks, 
 13                                                   short responseId) 
 14     throws IOException {
 15     if (LOG.isDebugEnabled()) {
 16       LOG.debug("Got heartbeat from: " + status.getTrackerName() + 
 17                 " (restarted: " + restarted + 
 18                 " initialContact: " + initialContact + 
 19                 " acceptNewTasks: " + acceptNewTasks + ")" +
 20                 " with responseId: " + responseId);
 21     }
 22 
 23     // Make sure heartbeat is from a tasktracker allowed by the jobtracker.
 24     if (!acceptTaskTracker(status)) {
 25       throw new DisallowedTaskTrackerException(status);
 26     }
 27 
 28     // First check if the last heartbeat response got through
 29     String trackerName = status.getTrackerName();
 30     long now = clock.getTime();
 31     if (restarted) {
 32       faultyTrackers.markTrackerHealthy(status.getHost());
 33     } else {
 34       faultyTrackers.checkTrackerFaultTimeout(status.getHost(), now);
 35     }
 36     
 37     HeartbeatResponse prevHeartbeatResponse =
 38       trackerToHeartbeatResponseMap.get(trackerName);
 39     boolean addRestartInfo = false;
 40 
 41     if (initialContact != true) {
 42       // If this isn't the 'initial contact' from the tasktracker,
 43       // there is something seriously wrong if the JobTracker has
 44       // no record of the 'previous heartbeat'; if so, ask the 
 45       // tasktracker to re-initialize itself.
 46       if (prevHeartbeatResponse == null) {
 47         // This is the first heartbeat from the old tracker to the newly 
 48         // started JobTracker
 49         if (hasRestarted()) {
 50           addRestartInfo = true;
 51           // inform the recovery manager about this tracker joining back
 52           recoveryManager.unMarkTracker(trackerName);
 53         } else {
 54           // Jobtracker might have restarted but no recovery is needed
 55           // otherwise this code should not be reached
 56           LOG.warn("Serious problem, cannot find record of 'previous' " +
 57                    "heartbeat for '" + trackerName + 
 58                    "'; reinitializing the tasktracker");
 59           return new HeartbeatResponse(responseId, 
 60               new TaskTrackerAction[] {new ReinitTrackerAction()});
 61         }
 62 
 63       } else {
 64                 
 65         // It is completely safe to not process a 'duplicate' heartbeat from a 
 66         // {@link TaskTracker} since it resends the heartbeat when rpcs are 
 67         // lost see {@link TaskTracker.transmitHeartbeat()};
 68         // acknowledge it by re-sending the previous response to let the 
 69         // {@link TaskTracker} go forward. 
 70         if (prevHeartbeatResponse.getResponseId() != responseId) {
 71           LOG.info("Ignoring 'duplicate' heartbeat from '" + 
 72               trackerName + "'; resending the previous 'lost' response");
 73           return prevHeartbeatResponse;
 74         }
 75       }
 76     }
 77       
 78     // Process this heartbeat 
 79     short newResponseId = (short)(responseId + 1);  //响应编号+1
 80     status.setLastSeen(now);
 81     if (!processHeartbeat(status, initialContact, now)) {
 82       if (prevHeartbeatResponse != null) {
 83         trackerToHeartbeatResponseMap.remove(trackerName);
 84       }
 85       return new HeartbeatResponse(newResponseId, 
 86                    new TaskTrackerAction[] {new ReinitTrackerAction()});
 87     }
 88       
 89     // Initialize the response to be sent for the heartbeat
 90     HeartbeatResponse response = new HeartbeatResponse(newResponseId, null);
 91     List<TaskTrackerAction> actions = new ArrayList<TaskTrackerAction>();
 92     boolean isBlacklisted = faultyTrackers.isBlacklisted(status.getHost());
 93     // Check for new tasks to be executed on the tasktracker
 94     if (recoveryManager.shouldSchedule() && acceptNewTasks && !isBlacklisted) {
 95       TaskTrackerStatus taskTrackerStatus = getTaskTrackerStatus(trackerName);
 96       if (taskTrackerStatus == null) {
 97         LOG.warn("Unknown task tracker polling; ignoring: " + trackerName);
 98       } else {
 99           //setup和cleanup的task优先级最高 
100         List<Task> tasks = getSetupAndCleanupTasks(taskTrackerStatus);
101         if (tasks == null ) {
102             //任务调度器分配任务 
103           tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName));    //分配任务Map OR Reduce Task
104         }
105         
106         if (tasks != null) {
107           for (Task task : tasks) {
108             //将任务放入actions列表,返回给TaskTracker
109             expireLaunchingTasks.addNewTask(task.getTaskID());
110             if(LOG.isDebugEnabled()) {
111               LOG.debug(trackerName + " -> LaunchTask: " + task.getTaskID());
112             }
113             actions.add(new LaunchTaskAction(task));
114           }
115         }
116       }
117     }
118       
119     // Check for tasks to be killed
120     List<TaskTrackerAction> killTasksList = getTasksToKill(trackerName);
121     if (killTasksList != null) {
122       actions.addAll(killTasksList);
123     }
124      
125     // Check for jobs to be killed/cleanedup
126     List<TaskTrackerAction> killJobsList = getJobsForCleanup(trackerName);
127     if (killJobsList != null) {
128       actions.addAll(killJobsList);
129     }
130 
131     // Check for tasks whose outputs can be saved
132     List<TaskTrackerAction> commitTasksList = getTasksToSave(status);
133     if (commitTasksList != null) {
134       actions.addAll(commitTasksList);
135     }
136 
137     // calculate next heartbeat interval and put in heartbeat response
138     int nextInterval = getNextHeartbeatInterval();
139     response.setHeartbeatInterval(nextInterval);
140     response.setActions(
141                         actions.toArray(new TaskTrackerAction[actions.size()]));
142     
143     // check if the restart info is req
144     if (addRestartInfo) {
145       response.setRecoveredJobs(recoveryManager.getJobsToRecover());
146     }
147         
148     // Update the trackerToHeartbeatResponseMap
149     trackerToHeartbeatResponseMap.put(trackerName, response);
150 
151     // Done processing the hearbeat, now remove 'marked' tasks
152     removeMarkedTasks(trackerName);
153         
154     return response;
155   }

  一、该方法包括5个参数:A、status封装了TaskTracker上的各种状态信息,包括: TaskTracker名称;TaskTracker主机名;TaskTracker对外的HTTp端口号;该TaskTracker上已经失败的任务总数;正在运行的各个任务的运行状态;上次汇报心跳的时间;Map slot总数,即同时运行的Map Task总数;Reduce slot总数;TaskTracker健康状态;TaskTracker资源(内存、CPU)信息。B、restarted表示TaskTracker是否刚刚重启。C、initialContact表示TaskTracker是否初次链接JobTracker。D、acceptNewTasks表示TaskTracker是否可以接受新的任务,这通常取决于solt是否有剩余和节点的健康状况等。E、responseID表示心跳相应编号,用于防止重复发送心跳,没接收一次心跳后该值加1。

  二、acceptTaskTracker(status)检查心跳是否来自于JobTracker所允许的TaskTracker,当一个TaskTracker在mapred.hosts(include list是合法的节点列表,只有位于该列表中的节点才可以允许JobTracker发起链接请求)指定的主机列表中,不在mapred.exclude(exclude list是一个非法节点列表,所有位于这个列表中的节点将无法与JobTracker链接)指定的主机列表中时,可以接入JobTracker。默认情况下这两个列表都为空,可在配置文件mapred-site.xml中配置,可动态加载。

  三、如果TaskTracker重启了,则将它标注为健康的TaskTracker,并从黑名单(Hadoop允许用户编写一个脚本监控TaskTracker是否健康,并通过心跳将检测结果发送给JobTracker,一旦发现不健康,JobTracker会将该TaskTracker加入黑名单,不再分配任务,直到检测结果为健康)或灰名单(JobTracker会记录每个TaskTracker被作业加入黑名单的次数#backlist,满足一定的要求就加入JobTracker的灰名单)中清除,否则,启动TaskTracker容错机制以检查它是否处于健康状态。

  四、获取该TaskTracker对应的HeartbeatResponse,并检查。如果不是第一次连接JobTracker,且对应的HeartbeatResponse等于null(表明JobTracker没有对应的记录,可能TaskTracker出错也可能JobTracker重启了),如果JobTracker重启了,则从recoveryManager中删除这个trackerName,否则向TaskTracker发送初始化命令ReinitTrackerAction;HeartbeatResponse不等于null,有可能是TaskTracker重复发送心跳,如果是重复发送心跳则返回当前的HeartbeatResponse。

  五、更新响应编号(+1);记录心跳发送时间status.setLastSeen(now);然后调用processHeartbeat(status, initialContact, now)方法来处理TaskTracker发送过来的心跳,先通过updateTaskTrackerStatus方法更新一些资源统计情况,并替换掉旧的taskTracker的状态,如果是初次链接JobTracker且JobTracker中有此taskTracker的记录(TT重启),则需要清空和这个TaskTracker相关的信息,如果不是初次链接JobTracker且JobTracker并没有发现此TaskTracker以前的记录,则直接返回false;如果初次链接JobTracker且包含在黑名单中,则increment the count of blacklisted trackers,然后加入trackerExpiryQueue和hostnameToTaskTracker;updateTaskStatuses(trackerStatus)更新task的状态,这个好复杂留待以后分析;updateNodeHealthStatus(trackerStatus, timeStamp)更新节点健康状态;返回true。若返回false,需要从trackerToHeartbeatResponseMap中删除对应的trackerName信息并返回给TaskTracker初始化命令ReinitTrackerAction。

  六、构造TaskTracker的心跳应答。首先获取setup和cleanup的tasks,如果tasks==null则用调度器(默认是JobQueueTaskScheduler)去分配task,tasks = taskScheduler.assignTasks(taskTrackers.get(trackerName)),会获得Map Task或者Reduce Task,对应assignTasks方法的代码如下:

  1 //JobQueueTaskScheduler最重要的方法是assignTasks,他实现了工作调度。
  2   @Override
  3   public synchronized List<Task> assignTasks(TaskTracker taskTracker)
  4       throws IOException {
  5     TaskTrackerStatus taskTrackerStatus = taskTracker.getStatus(); 
  6     ClusterStatus clusterStatus = taskTrackerManager.getClusterStatus();
  7     final int numTaskTrackers = clusterStatus.getTaskTrackers();
  8     final int clusterMapCapacity = clusterStatus.getMaxMapTasks();
  9     final int clusterReduceCapacity = clusterStatus.getMaxReduceTasks();
 10 
 11     Collection<JobInProgress> jobQueue =
 12       jobQueueJobInProgressListener.getJobQueue();
 13     //首先它会检查 TaskTracker 端还可以做多少个 map 和 reduce 任务,将要派发的任务数是否超出这个数,
 14     //是否超出集群的任务平均剩余可负载数。如果都没超出,则为此TaskTracker 分配一个 MapTask 或 ReduceTask 。
 15     //
 16     // Get map + reduce counts for the current tracker.
 17     //
 18     final int trackerMapCapacity = taskTrackerStatus.getMaxMapSlots();
 19     final int trackerReduceCapacity = taskTrackerStatus.getMaxReduceSlots();
 20     final int trackerRunningMaps = taskTrackerStatus.countMapTasks();
 21     final int trackerRunningReduces = taskTrackerStatus.countReduceTasks();
 22 
 23     // Assigned tasks
 24     List<Task> assignedTasks = new ArrayList<Task>();
 25 
 26     //
 27     // Compute (running + pending) map and reduce task numbers across pool
 28     //
 29   //计算剩余的map和reduce的工作量:remaining 
 30     int remainingReduceLoad = 0;
 31     int remainingMapLoad = 0;
 32     synchronized (jobQueue) {
 33       for (JobInProgress job : jobQueue) {
 34         if (job.getStatus().getRunState() == JobStatus.RUNNING) {
 35           remainingMapLoad += (job.desiredMaps() - job.finishedMaps());
 36           if (job.scheduleReduces()) {
 37             remainingReduceLoad += 
 38               (job.desiredReduces() - job.finishedReduces());
 39           }
 40         }
 41       }
 42     }
 43 
 44     // Compute the 'load factor' for maps and reduces
 45     double mapLoadFactor = 0.0;
 46     if (clusterMapCapacity > 0) {
 47       mapLoadFactor = (double)remainingMapLoad / clusterMapCapacity;
 48     }
 49     double reduceLoadFactor = 0.0;
 50     if (clusterReduceCapacity > 0) {
 51       reduceLoadFactor = (double)remainingReduceLoad / clusterReduceCapacity;
 52     }
 53         
 54     //
 55     // In the below steps, we allocate first map tasks (if appropriate),
 56     // and then reduce tasks if appropriate.  We go through all jobs
 57     // in order of job arrival; jobs only get serviced if their 
 58     // predecessors are serviced, too.
 59     //
 60 
 61     //
 62     // We assign tasks to the current taskTracker if the given machine 
 63     // has a workload that's less than the maximum load of that kind of
 64     // task.
 65     // However, if the cluster is close to getting loaded i.e. we don't
 66     // have enough _padding_ for speculative executions etc., we only 
 67     // schedule the "highest priority" task i.e. the task from the job 
 68     // with the highest priority.
 69     //
 70     
 71     final int trackerCurrentMapCapacity = 
 72       Math.min((int)Math.ceil(mapLoadFactor * trackerMapCapacity), 
 73                               trackerMapCapacity);
 74     int availableMapSlots = trackerCurrentMapCapacity - trackerRunningMaps;
 75     boolean exceededMapPadding = false;
 76     if (availableMapSlots > 0) {
 77       exceededMapPadding = 
 78         exceededPadding(true, clusterStatus, trackerMapCapacity);
 79     }
 80     int numLocalMaps = 0;
 81     int numNonLocalMaps = 0;
 82     scheduleMaps:
 83     for (int i=0; i < availableMapSlots; ++i) {
 84       synchronized (jobQueue) {
 85         for (JobInProgress job : jobQueue) {
 86           if (job.getStatus().getRunState() != JobStatus.RUNNING) {
 87             continue;
 88           }
 89 
 90           Task t = null;
 91           
 92           // Try to schedule a node-local or rack-local Map task
 93           t = 
 94             job.obtainNewNodeOrRackLocalMapTask(taskTrackerStatus, 
 95                 numTaskTrackers, taskTrackerManager.getNumberOfUniqueHosts());
 96           if (t != null) {
 97             assignedTasks.add(t);
 98             ++numLocalMaps;
 99             
100             // Don't assign map tasks to the hilt!
101             // Leave some free slots in the cluster for future task-failures,
102             // speculative tasks etc. beyond the highest priority job
103             if (exceededMapPadding) {
104               break scheduleMaps;
105             }
106            
107             // Try all jobs again for the next Map task 
108             break;
109           }
110           
111           // Try to schedule a node-local or rack-local Map task
112           //产生 Map 任务使用 JobInProgress 的obtainNewMapTask() 方法,
113           //实质上最后调用了 JobInProgress 的 findNewMapTask() 访问nonRunningMapCache 。
114           t = 
115             job.obtainNewNonLocalMapTask(taskTrackerStatus, numTaskTrackers,
116                                    taskTrackerManager.getNumberOfUniqueHosts());
117           
118           if (t != null) {
119             assignedTasks.add(t);
120             ++numNonLocalMaps;
121             
122             // We assign at most 1 off-switch or speculative task
123             // This is to prevent TaskTrackers from stealing local-tasks
124             // from other TaskTrackers.
125             break scheduleMaps;
126           }
127         }
128       }
129     }
130     int assignedMaps = assignedTasks.size();
131 
132     //
133     // Same thing, but for reduce tasks
134     // However we _never_ assign more than 1 reduce task per heartbeat
135     ////分配完map task,再分配reduce task 
136     final int trackerCurrentReduceCapacity = 
137       Math.min((int)Math.ceil(reduceLoadFactor * trackerReduceCapacity), 
138                trackerReduceCapacity);
139     final int availableReduceSlots = 
140       Math.min((trackerCurrentReduceCapacity - trackerRunningReduces), 1);
141     boolean exceededReducePadding = false;
142     if (availableReduceSlots > 0) {
143       exceededReducePadding = exceededPadding(false, clusterStatus, 
144                                               trackerReduceCapacity);
145       synchronized (jobQueue) {
146         for (JobInProgress job : jobQueue) {
147           if (job.getStatus().getRunState() != JobStatus.RUNNING ||
148               job.numReduceTasks == 0) {
149             continue;
150           }
151           //使用JobInProgress.obtainNewReduceTask() 方法,
152           //实质上最后调用了JobInProgress的 findNewReduceTask() 访问 nonRuningReduceCache
153           Task t = 
154             job.obtainNewReduceTask(taskTrackerStatus, numTaskTrackers, 
155                                     taskTrackerManager.getNumberOfUniqueHosts()
156                                     );
157           if (t != null) {
158             assignedTasks.add(t);
159             break;
160           }
161           
162           // Don't assign reduce tasks to the hilt!
163           // Leave some free slots in the cluster for future task-failures,
164           // speculative tasks etc. beyond the highest priority job
165           if (exceededReducePadding) {
166             break;
167           }
168         }
169       }
170     }
171     
172     if (LOG.isDebugEnabled()) {
173       LOG.debug("Task assignments for " + taskTrackerStatus.getTrackerName() + " --> " +
174                 "[" + mapLoadFactor + ", " + trackerMapCapacity + ", " + 
175                 trackerCurrentMapCapacity + ", " + trackerRunningMaps + "] -> [" + 
176                 (trackerCurrentMapCapacity - trackerRunningMaps) + ", " +
177                 assignedMaps + " (" + numLocalMaps + ", " + numNonLocalMaps + 
178                 ")] [" + reduceLoadFactor + ", " + trackerReduceCapacity + ", " + 
179                 trackerCurrentReduceCapacity + "," + trackerRunningReduces + 
180                 "] -> [" + (trackerCurrentReduceCapacity - trackerRunningReduces) + 
181                 ", " + (assignedTasks.size()-assignedMaps) + "]");
182     }
183 
184     return assignedTasks;
185   }
View Code

  该方法会先获取集群的基本信息,容量,然后获取此tasktracker的基本信息(slots及正在运行的task数);然后计算所有运行中的job的剩余量的总和(remainingReduceLoad和remainingMapLoad);分别计算map和reduce的负载因子(都是两种类型的剩余占对应的最大容量比)mapLoadFactor、reduceLoadFactor;然后计算trackerCurrentMapCapacity当前容量这里会使得集群中的所有tasktracker的负载尽量平均,因为Math.min((int)Math.ceil(mapLoadFactor * trackerMapCapacity), trackerMapCapacity),mapLoadFactor * trackerMapCapacity会使得该节点当前map的容量和集群整体的负载相近;然后获取当前tasktracker可用的mapslot,该tasktracker超过集群目前的负载水平后就不分配task,否则会有空闲的slot等待分配task;然后为每个mapslot选择一个map task,选择的过程十分复杂,首先会遍历jobQueue中的每个处于非运行状态的JobInProgress,调JobInProgress.obtainNewNodeOrRackLocalMapTask方法获取基于节点本地或者机架本地的map task,obtainNewNodeOrRackLocalMapTask会通过调用findNewMapTask获取map数组中的索引值。

  (1)首先从失败task选取合适的task直接返回。findNewMapTask方法会先通过findTaskFromList方法从failedMaps获取合适的失败map并返回(返回条件是A、该tasktracker没运行过TaskInProgress;B、该TaskInProgress失败过的节点数不低于运行taskTracker的主机数,这两个满足一个即可),如果有合适的失败map task,则通过scheduleMap(tip)方法将其加入nonLocalRunningMaps(该task没有对应的分片信息)或者runningMapCache(每个分片的存储Node及其对应的maptask列表,还有Node的父节点Node及对应的maptask列表也要加入),然后返回给obtainNewNodeOrRackLocalMapTask这个maptask在map数组中的索引值,此时从失败的task中寻找合适的task并不考虑数据的本地性。

  final SortedSet<TaskInProgress> failedMaps是按照task attempt失败次数排序的TaskInProgress集合。

  Set<TaskInProgress> nonLocalRunningMaps是no-local且正在运行的TaskInProgress结合。

  Map<Node, Set<TaskInProgress>> runningMapCache是Node与运行的TaskInProgress集合映射关系,一个任务获得调度机会,其TaskInProgress便会添加进来。

  (2)如果没有合适的失败task,则获取当前tasktracker对应的Node,然后“从近到远一层一层地寻找,直到找到合适的TaskInProgress”(通过不断获取父Node)从nonRunningMapCache中获取此Node的所有map task列表,如果列表不为空则调用findTaskFromList方法从这个列表中获取合适的TaskInProgress,如果tip!=null 则调用scheduleMap(tip)(上面已经介绍),然后检查列表是否为空,为空则从nonRunningMapCache清除这个Node的所有信息,再返回给obtainNewNodeOrRackLocalMapTask这个maptask在map数组中的索引值,如果遍历拓扑最大层数还是没有合适的task,则返回给obtainNewNodeOrRackLocalMapTask一个值-1,这里说明如果方法findNewMapTask的参数maxCacheLevel大于0则是获取(node-local或者rack-local,后面的其他情况不予考虑),其实就是优先考虑tasktracker对应Node有分片信息的本地的map(是node-local),然后再考虑父Node(同一个机架rack-local)的,再其他的(跨机架off-switch,这点得看设置的网络深度,大于2才会考虑),这样由近及远的做法会使得减少数据的拷贝距离,降低网络开销。  

  Map<Node, List<TaskInProgress>> nonRunningMapCache是Node与未运行的TaskInProgress的集合映射关系,通过作业的InputFormat可直接获取。

  (3)然后获取cache大网络深度的Node;获取该tasktracker对应Node的最深父Node;剩下的和上面(2)中的类似,只不过这次找的跨机架(或者更高一级,主要看设置的网络深度)。选择跨机架的task,scheduleMap(tip);返回给obtainNewNodeOrRackLocalMapTask这个maptask在map数组中的索引值。  

  (4)然后是查找nonLocalMaps中有无合适的task,这种任务没有输入数据,不需考虑本地性。scheduleMap(tip);返回给obtainNewNodeOrRackLocalMapTask这个maptask在map数组中的索引值。

  final List<TaskInProgress> nonLocalMaps是一些计算密集型任务,比如hadoop example中的PI作业。

  (5)如果有“拖后腿”的task(hasSpeculativeMaps==true),遍历runningMapCache,异常从node-local、rack-local、off-switch选择合适的“拖后腿”task,返回给obtainNewNodeOrRackLocalMapTask这个maptask在map数组中的索引值,这不需要scheduleMap(tip),很明显已经在runningMapCache中了。

  (6)从nonLocalRunningMaps中查找“拖后腿”的task,这是计算密集型任务在拖后腿,返回给obtainNewNodeOrRackLocalMapTask这个maptask在map数组中的索引值。

  (7)再找不到返回-1.

  obtainNewNodeOrRackLocalMapTask方法只执行到(2),要么返回一个MapTask要么返回null(findNewMapTask返回的是-1)这个maptask在map数组中的索引值,不再进行后续步骤。

  返回到obtainNewMapTask方法,获得map数组索引值后,还要获取该TaskInProgress的task(可能是MapTask或者ReduceTask,这里是MapTask),把这个task返回给assignTasks方法,加入分配task列表assignedTasks,跳出内层for循环,准备为下一个mapslot找合适的MapTask,如果没有合适的MapTask(node-local或者rack-local),则调用obtainNewNonLocalMapTask获取(除了上面的(2)不执行,其他都执行)MapTask,加入分配task列表assignedTasks,跳出内层for循环。

  然后分配ReduceTask,每次心跳分配不超过1个ReduceTask。和分配mapslot类似,这里至多分配一个reduceslot,遍历jobQueue通过obtainNewReduceTask方法获取合适的ReduceTask。obtainNewReduceTask方法会先做一个检查,和Map Task一样,会对节点的可靠性和磁盘空间进行检查;然后判断Job的map是否运行到该调用reduce的比例,若不到就返回null;然后调用findNewReduceTask方法获取reduce的索引值。findNewReduceTask方法会先检查该Job是否有reduce,没有就返回-1,检查此taskTracker是否可以运行reduce任务,然后调用方法findTaskFromList从nonRunningReduces中选择合适的TaskInProgress,放入runningReduces中,直接返回给obtainNewReduceTask对应的索引;如果没有合适的就从“拖后腿”的runningReduces中通过findSpeculativeTask方法找出退后退的reduce,放入runningReduces中,直接返回给obtainNewReduceTask对应的索引;再找不到就直接返回给obtainNewReduceTask方法-1。然后返回到obtainNewReduceTask方法,获取相应的ReduceTask,返回给assignTasks方法,加入分配任务列表assignedTasks中。

  在分配mapslot和reduceslot时循环中都有判断exceededReducePadding真假值的代码,exceededReducePadding是通过exceededPadding方法来获取的。在任务调度器JobQueueTaskScheduler的实现中,如果在集群中的TaskTracker节点比较多的情况下,它总是会想办法让若干个TaskTracker节点预留一些空闲的slots(计算能力),以便能够快速的处理优先级比较高的Job的Task或者发生错误的Task,以保证已经被调度的作业的完成。exceededPadding方法判断当前集群是否需要预留一部分map/reduce计算能力来执行那些失败的、紧急的或特殊的任务。

  还有一点需要注意的是对于每个slot总是会优先考虑jobQueue中的第一个job的任务(map、reduce),如果分配不成功才会考虑其他Job的,这样尽量保证优先处理第一个Job。

  assignTasks方法最后返回分配任务列表assignedTasks。调度器只分配MapTask和ReduceTask。而作业的其它辅助任务都是交由JobTracker来调度的,如JobSetup、JobCleanup、TaskCleanup任务等。

  对于JobQueueTaskScheduler的任务调度实现原则可总结如下:
     1.先调度优先级高的作业,统一优先级的作业则先进先出;
     2.尽量使集群每一个TaskTracker达到负载均衡(这个均衡是task数量上的而不是实际的工作强度);
     3.尽量分配作业的本地任务给TaskTracker,但不是尽快分配作业的本地任务给TaskTracker,最多分配一个非本地任务给TaskTracker(一是保证任务的并发性,二是避免有些TaskTracker的本地任务被偷走),最多分配一个reduce任务;
      4.为优先级或者紧急的Task预留一定的slot;

  七、遍历任务列表tasks,将所有task放入expireLaunchingTasks中监控是否过期expireLaunchingTasks.addNewTask(task.getTaskID()),然后放入actions.add(new LaunchTaskAction(task))。

  八、遍历taskTracker对应的所有task是否有需要kill的,以及trackerToTasksToCleanup中对应此tasktracker的task需要清理,封装成KillTaskAction,加入actions中。

  九、获取trackerToJobsToCleanup中对应此tasktracker的所有jobs,封装成KillJobAction,加入actions中。

  十、检查tasktracker的所有的task中状态等于TaskStatus.State.COMMIT_PENDING的,封装成CommitTaskAction,加入actions中。表示这个task的输出可以保存。

  十一、计算下一次心跳间隔与actions一同加入响应信息response。

  十二、如果JobTracker重启了,则将需要将需要恢复的Job列表加入response。response.setRecoveredJobs(recoveryManager.getJobsToRecover())

  十三、将trackerName及其响应信息response,加入trackerToHeartbeatResponseMap

  十四、因为已经将任务分配出去了,所以需要更新JobTracker的一些数据结构。removeMarkedTasks(trackerName)从一些相关的数据结构中清除trackerName对应的数据,比如trackerToMarkedTasksMap、taskidToTrackerMap、trackerToTaskMap、taskidToTIPMap等。

  十五、最后返回响应信息response。

 

参考:

1,、董西成,《hadoop技术内幕---深入理解MapReduce架构设计与实现原理》

2、http://blog.csdn.net/xhh198781/article/details/7046389

posted @ 2014-06-11 09:34  玖疯  阅读(2006)  评论(2编辑  收藏  举报