mapreduce job提交流程源码级分析(二)(原创)
上一小节(http://www.cnblogs.com/lxf20061900/p/3643581.html)讲到Job. submit()方法中的:
info = jobClient.submitJobInternal(conf)方法用来上传资源提交Job的,这一节就讲讲这个方法。
一、首先jobClient在构造函数中会构造了和JobTracker通信的对象jobSubmitClient,jobSubmitClient是JobSubmissionProtocol类型的动态代理类。JobSubmissionProtocol协议是JobClient与JobTracker通信专用协议。代码如下:
private static JobSubmissionProtocol createRPCProxy(InetSocketAddress addr, Configuration conf) throws IOException { return (JobSubmissionProtocol) RPC.getProxy(JobSubmissionProtocol.class, JobSubmissionProtocol.versionID, addr, UserGroupInformation.getCurrentUser(), conf, NetUtils.getSocketFactory(conf, JobSubmissionProtocol.class)); }
getProxy方法的关键是Invoker类,Invoker类实现了 InvocationHandler接口,主要有两个成员变量,remoteId是Client.ConnectionId类型,保存连接地址和用户的 ticket,客户端连接服务器由<remoteAddress,protocol,ticket>唯一标识。
Invoker类的invoke方法最重要的操作是:ObjectWritable value = (ObjectWritable) client.call(new Invocation(method, args), remoteId)。Invocation实现了Writable接口,并封装了method和args,使得可以通过RPC传输;Client.call方法将Writable参数封装到一个Call中,并且连接JobTracker后将封装后call发送过去,同步等待call执行完毕,返回value。
public Writable call(Writable param, ConnectionId remoteId) throws InterruptedException, IOException { Call call = new Call(param); Connection connection = getConnection(remoteId, call); connection.sendParam(call); // send the parameter boolean interrupted = false; synchronized (call) { while (!call.done) { try { call.wait(); // wait for the result } catch (InterruptedException ie) { // save the fact that we were interrupted interrupted = true; } } if (interrupted) { // set the interrupt flag now that we are done waiting Thread.currentThread().interrupt(); } if (call.error != null) { if (call.error instanceof RemoteException) { call.error.fillInStackTrace(); throw call.error; } else { // local exception // use the connection because it will reflect an ip change, unlike // the remoteId throw wrapException(connection.getRemoteAddress(), call.error); } } else { return call.value; } } }
上面的第四行代码用于建立同JobTracker的连接。而Client.getConnection方法中connection.setupIOstreams()才是真正建立连接的地方,其中的socket是通过默认的SocketFactory .createSocket(),而这个默认的SocketFactory是org.apache.hadoop.net. StandardSocketFactory。
二、jobClient.submitJobInternal(conf)初始化staging目录(这是job提交的根目录):Path jobStagingArea=JobSubmissionFiles.getStagingDir(JobClient.this, jobCopy),这个方法最终会调用jobTracker.getStagingAreaDirInternal()方法,代码如下:
private String getStagingAreaDirInternal(String user) throws IOException { final Path stagingRootDir = new Path(conf.get("mapreduce.jobtracker.staging.root.dir", "/tmp/hadoop/mapred/staging")); final FileSystem fs = stagingRootDir.getFileSystem(conf); return fs.makeQualified(new Path(stagingRootDir, user+"/.staging")).toString(); }
三、从JobTracker获取JobID。JobID jobId = jobSubmitClient.getNewJobId()。最终调用的是JobTracker.getNewJobId()方法。然后执行Path submitJobDir = new Path(jobStagingArea, jobId.toString());获得该job提交的路径,也就是在stagingDir目录下建一个以jobId为文件名的目录,可以查看配置文件中的"mapreduce.job.dir"来查看此完整目录。有了 submitJobDir之后就可以将job运行所需的全部文件上传到对应的目录下了,具体是调用 jobClient.copyAndConfigureFiles(jobCopy, submitJobDir)这个方法。
四、copyAndConfigureFiles(jobCopy, submitJobDir)实现上传文件,包括-tmpfiles(外部文件)、tmpjars(第三方jar包)、tmparchives(一些归档文件)以及job.jar拷贝到HDFS中,这个方法最终调用jobClient.copyAndConfigureFiles(job, jobSubmitDir, replication);这个方法实现文件上传。而前三种文件(tmpfiles(外部文件)、tmpjars(第三方jar包)、tmparchives(一些归档文件))的实际上传过程在copyRemoteFiles方法中,通过FileUtil.copy完成拷贝,这三种文件都是先分割文件列表后分别上传(每一类文件可以有多个)。然后是:
// First we check whether the cached archives and files are legal. TrackerDistributedCacheManager.validate(job); // set the timestamps of the archives and files TrackerDistributedCacheManager.determineTimestamps(job); // set the public/private visibility of the archives and files TrackerDistributedCacheManager.determineCacheVisibilities(job); // get DelegationTokens for cache files TrackerDistributedCacheManager.getDelegationTokens(job,job.getCredentials());
上面的代码是进行一些cached archives and files的校验和保存其时间戳和权限内容
Job.jar通过fs.copyFromLocalFile方法拷贝到HDFS中。而job.jar(这是打包后的作业)文件则是直接通过fs.copyFromLocalFile(new Path(originalJarPath), submitJarFile);上传完成。我们在提交作业的时候会在本地先打包成jar文件然后将配置文件中的"mapred.jar"设置为本地jar包路径,当在这里拷贝到HDFS中后在重新将"mapred.jar"设置为HDFS对应job.jar包的路径。
同时这四个文件都会设置replication个副本,防止热点出现。
五、然后就会根据我们设置的outputFormat类执行output.checkOutputSpecs(context),进行输出路径的检验,主要是保证输出路径不存在,存在会抛出异常。
六、对输入文件进行分片操作了,int maps = writeSplits(context, submitJobDir)。writeSplits方法会根据是否使用了新API选择不同的方法写:
private int writeSplits(org.apache.hadoop.mapreduce.JobContext job, Path jobSubmitDir) throws IOException, InterruptedException, ClassNotFoundException { JobConf jConf = (JobConf)job.getConfiguration(); int maps; if (jConf.getUseNewMapper()) { maps = writeNewSplits(job, jobSubmitDir); } else { maps = writeOldSplits(jConf, jobSubmitDir); } return maps; }
使用了新API后,会调用writeNewSplits(job, jobSubmitDir)方法,这个方法代码如下:
private <T extends InputSplit> int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException, InterruptedException, ClassNotFoundException { Configuration conf = job.getConfiguration(); InputFormat<?, ?> input = ReflectionUtils.newInstance(job.getInputFormatClass(), conf);//默认是TextInputFormat List<InputSplit> splits = input.getSplits(job); T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]); // sort the splits into order based on size, so that the biggest // go first,大文件优先处理 Arrays.sort(array, new SplitComparator()); JobSplitWriter.createSplitFiles(jobSubmitDir, conf, jobSubmitDir.getFileSystem(conf), array); return array.length;//这是mapper的数量 }
可以看出该方法首先获取splits数组信息后,排序,将会优先处理大文件。JobSplitWriter.createSplitFiles(jobSubmitDir, conf, jobSubmitDir.getFileSystem(conf), array)方法会将split信息和SplitMetaInfo都写入HDFS中,其代码如下:
public static <T extends InputSplit> void createSplitFiles(Path jobSubmitDir, Configuration conf, FileSystem fs, T[] splits) throws IOException, InterruptedException { FSDataOutputStream out = createFile(fs, JobSubmissionFiles.getJobSplitFile(jobSubmitDir), conf); SplitMetaInfo[] info = writeNewSplits(conf, splits, out); out.close(); writeJobSplitMetaInfo(fs,JobSubmissionFiles.getJobSplitMetaFile(jobSubmitDir), new FsPermission(JobSubmissionFiles.JOB_FILE_PERMISSION), splitVersion, info); }
如上writeNewSplits会将信息写入job.split文件,然后返回SplitMetaInfo数组信息,再通过writeJobSplitMetaInfo方法将SplitMetaInfo信息写入job.splitmetainfo中。
七、然后将配置文件写入:jobCopy.writeXml(out);//写"job.xml"。
八、通过 jobSubmitClient.submitJob(jobId, submitJobDir.toString(), jobCopy.getCredentials())提交job,最终调用的是JobTracker.submitJob。
九、返回一个NetworkedJob(status, prof, jobSubmitClient)对象,它实现了RunningJob接口。这个对象可以在JobClient端(比如eclipse,不断的打印运行日志)。
ps:
一、hadoop版本是1.0.0;
二、上述文件的提交目录可以在web ui中打开相应作业的配置文件查找"mapreduce.job.dir",就可以看到文件的上传目录。比如:hdfs://XXXX:8020/user/hadoop/.staging/job_201403141637_0160
下一节关注上述的步骤八。
错误之处还望大伙指点
参考:
http://www.kankanews.com/ICkengine/archives/87415.shtml