Lv.的博客

Boost无锁队列

 

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/okiwilldoit/article/details/50970408

在开发接收转发agent时,采用了多线程的生产者-消费者模式,用了加互斥锁的方式来实现线程同步。互斥锁会阻塞线程,所以压测时,效率并不高。所以想起用无锁队列来实现,性能确实提升了。

首先介绍下lock-free和wait-free的区别:

阻塞算法可能会出现整个系统都挂起的情况(占有锁的线程被中断,无法释放所,那么所有试图争用这个锁的线程会被挂起),系统中的所有线程全部饿死。

无锁算法可以保证系统中至少有一个线程处于工作状态,但是还是可能有线程永远抢不到资源而被饿死。

无等待算法保证系统中的所有线程都能处于工作状态,没有线程会被饿死,只要时间够,所有线程都能结束。相比于无锁算法,无等待算法有更强的保证。

一. 用互斥锁实现单生产者-单消费者

#include <string>
#include <sstream>
#include <list>
#include <pthread.h>
#include <iostream>
#include <time.h>

using namespace std;

int producer_count = 0;
int consumer_count = 0;

list<string> product;
list<string> consumer_list;
pthread_mutex_t mutex;

const int iterations = 10000;

//是否生产完毕标志
bool done = false;

void* producer(void* args)
{
    for (int i = 0; i != iterations; ++i) {
        pthread_mutex_lock(&mutex);
        int value = ++producer_count;
        stringstream ss;
        ss<<value;
        product.push_back(ss.str());
        //cout<<"list push:"<<ss.str()<<endl;
        pthread_mutex_unlock(&mutex);
    }
    return 0;
}



//消费函数
void* consumer(void* args)
{
    //当没有生产完毕,则边消费边生产
    while (!done) {
        pthread_mutex_lock(&mutex);
        if(!product.empty()){
            consumer_list.splice(consumer_list.end(), product);
            pthread_mutex_unlock(&mutex);
            while(!consumer_list.empty()){
                string value = consumer_list.front();
                consumer_list.pop_front();
                //cout<<"list pop:"<<value<<endl;
                ++consumer_count;
            }           
        }else{
            pthread_mutex_unlock(&mutex);
        }
    }
    //如果生产完毕,则消费
    while(!consumer_list.empty()){
        string value = consumer_list.front();
        consumer_list.pop_front();
        //cout<<"list pop:"<<value<<endl;
        ++consumer_count;
    }
    return 0;
}

int main(int argc, char* argv[])
{
    struct timespec time_start={0, 0},time_end={0, 0};
    clock_gettime(CLOCK_REALTIME, &time_start);

    pthread_t producer_tid;
    pthread_t consumer_tid;

    pthread_mutex_init (&mutex,NULL);
    pthread_create(&producer_tid, NULL, producer, NULL);
    pthread_create(&consumer_tid, NULL, consumer, NULL);

    //等待生产者生产完毕
    pthread_join(producer_tid, NULL);
    //可以消费标志
    done = true;     //主线程不等生产线程完毕就设置done标记
    cout << "producer done" << endl;    //输出以观察主线程和各子线程的执行顺序

    //等待消费者结束
    pthread_join(consumer_tid, NULL);
    clock_gettime(CLOCK_REALTIME, &time_end);

    long cost = (time_end.tv_sec-time_start.tv_sec)/1000000 + (time_end.tv_nsec-time_start.tv_nsec)/1000;

    cout<<"===========cost time:"<<cost<<"us==========="<<endl;

    cout << "produced " << producer_count << " objects." << endl;
    cout << "consumed " << consumer_count << " objects." << endl;
}

 

生产消费10000个string类型的数据,耗时:58185us

二. Boost库的无锁队列

boost.lockfree实现了三种无锁数据结构:
boost::lockfree::queue
alock-free multi-produced/multi-consumer queue
一个无锁的多生产者/多消费者队列,注意,这个queue不支持string类型,支持的数据类型要求:
- T must have a copy constructor
- T must have a trivial assignment operator
- T must have a trivial destructor

boost::lockfree::stack
alock-free multi-produced/multi-consumer stack
一个无锁的多生产者/多消费者栈,支持的数据类型要求:
- T must have a copy constructor

boost::lockfree::spsc_queue
await-free single-producer/single-consumer queue (commonly known as ringbuffer)
一个无等待的单生产者/单消费者队列(通常被称为环形缓冲区),支持的数据类型要求:
- T must have a default constructor
- T must be copyable

详细资料可以看官方文档:http://www.boost.org/doc/libs/1_55_0/doc/html/lockfree.html

三. Queue示例

这里实现的还是单生产者-单消费者。

#include <pthread.h>
#include <boost/lockfree/queue.hpp>
#include <iostream>
#include <time.h>
#include <boost/atomic.hpp>

using namespace std;

//生产数量
boost::atomic_int producer_count(0);
//消费数量
boost::atomic_int consumer_count(0);
//队列
boost::lockfree::queue<int> queue(512);


//迭代次数
const int iterations = 10000;

//生产函数
void* producer(void* args)
{
    for (int i = 0; i != iterations; ++i) {
        int value = ++producer_count;
        //原子计数————多线程不存在计数不上的情况       
        //若没有进入队列,则重复推送
        while(!queue.push(value));
        //cout<<"queue push:"<<value<<endl;
    }
    return 0;
}

//是否生产完毕标志
boost::atomic<bool> done (false);

//消费函数
void* consumer(void* args)
{
    int value;
    //当没有生产完毕,则边消费边生产
    while (!done) {
        //只要能弹出元素,就消费
        while (queue.pop(value)) {
            //cout<<"queue pop:"<<value<<endl;
            ++consumer_count;
        }
    }
    //如果生产完毕,则消费
    while (queue.pop(value)){
        //cout<<"queue pop:"<<value<<endl;
        ++consumer_count;
    }
    return 0;
}

int main(int argc, char* argv[])
{
    cout << "boost::lockfree::queue is ";
    if (!queue.is_lock_free())
        cout << "not ";
    cout << "lockfree" << endl;

    struct timespec time_start={0, 0},time_end={0, 0};
    clock_gettime(CLOCK_REALTIME, &time_start);

    pthread_t producer_tid;
    pthread_t consumer_tid;

    pthread_create(&producer_tid, NULL, producer, NULL);
    pthread_create(&consumer_tid, NULL, consumer, NULL);

    //等待生产者生产完毕
    pthread_join(producer_tid, NULL);
    //可以消费标志
    done = true;     //主线程不等生产线程完毕就设置done标记
    cout << "producer done" << endl;    //输出以观察主线程和各子线程的执行顺序

    //等待消费者结束
    pthread_join(consumer_tid, NULL);
    clock_gettime(CLOCK_REALTIME, &time_end);

    long cost = (time_end.tv_sec-time_start.tv_sec)/1000000 + (time_end.tv_nsec-time_start.tv_nsec)/1000;

    cout<<"===========cost time:"<<cost<<"us==========="<<endl;

    //输出生产和消费数量
    cout << "produced " << producer_count << " objects." << endl;
    cout << "consumed " << consumer_count << " objects." << endl;

    return 0;
}

 

生产消费10000个int类型的数据,耗时:3963us
stack与queue类似,只不过是先进后出。

四. Waitfree Single-Producer/Single-Consumer Queue无等待单生产者/单消费者队列

#include <pthread.h>
#include <iostream>
#include <time.h>
#include <boost/lockfree/spsc_queue.hpp>
#include <boost/atomic.hpp>

using namespace std;

int producer_count = 0;
boost::atomic_int consumer_count (0);

boost::lockfree::spsc_queue<int, boost::lockfree::capacity<1024> > spsc_queue;

const int iterations = 10000;

void* producer(void* args)
{
    for (int i = 0; i != iterations; ++i) {
        int value = ++producer_count;
        while(!spsc_queue.push(value));
        //cout<<"queue push:"<<value<<endl;
    }
    return 0;
}

//是否生产完毕标志
boost::atomic<bool> done (false);

//消费函数
void* consumer(void* args)
{
    int value;
    //当没有生产完毕,则边消费边生产
    while (!done) {
        //只要能弹出元素,就消费
        while (spsc_queue.pop(value)) {
            //cout<<"queue pop:"<<value<<endl;
            ++consumer_count;
        }
    }
    //如果生产完毕,则消费
    while (spsc_queue.pop(value)){
        //cout<<"queue pop:"<<value<<endl;
        ++consumer_count;
    }
    return 0;
}

int main(int argc, char* argv[])
{
    using namespace std;
    cout << "boost::lockfree::queue is ";
    if (!spsc_queue.is_lock_free())
        cout << "not ";
    cout << "lockfree" << endl;

    struct timespec time_start={0, 0},time_end={0, 0};
    clock_gettime(CLOCK_REALTIME, &time_start);

    pthread_t producer_tid;
    pthread_t consumer_tid;

    pthread_create(&producer_tid, NULL, producer, NULL);
    pthread_create(&consumer_tid, NULL, consumer, NULL);

    //等待生产者生产完毕
    pthread_join(producer_tid, NULL);
    //可以消费标志
    done = true;     //主线程不等生产线程完毕就设置done标记
    cout << "producer done" << endl;    //输出以观察主线程和各子线程的执行顺序

    //等待消费者结束
    pthread_join(consumer_tid, NULL);
    clock_gettime(CLOCK_REALTIME, &time_end);

    long cost = (time_end.tv_sec-time_start.tv_sec)/1000000 + (time_end.tv_nsec-time_start.tv_nsec)/1000;

    cout<<"===========cost time:"<<cost<<"us==========="<<endl;

    cout << "produced " << producer_count << " objects." << endl;
    cout << "consumed " << consumer_count << " objects." << endl;
}

 

生产消费10000个int类型的数据,耗时:1832us
如果把int改为string类型,耗时:28788us

五.性能对比

这里写图片描述
从上面可以看出在单生产者-单消费者模式下,spsc_queue比queue性能好,无锁队列比互斥锁的方式性能也要好。

posted @ 2018-09-20 10:31  Avatarx  阅读(3411)  评论(0编辑  收藏  举报