## 2017-2018-1 20155232 实验三 实时系统
2017-2018-1 20155232 实验三 实时系统
实验一:
- 学习使用Linux命令wc(1)
基于Linux Socket程序设计实现wc(1)服务器(端口号是你学号的后6位)和客户端
客户端传一个文本文件给服务器
服务器返加文本文件中的单词数
上方提交代码
附件提交测试截图,至少要测试附件中的两个文件
-
首先学习wc命令:查看帮助文档
-
wc命令的功能为统计指定文件中的字节数、字数、行数,并将统计结果显示输出。
-
命令参数:
-c 统计字节数。
-l 统计行数。
-m 统计字符数。这个标志不能与 -c 标志一起使用。
-w 统计字数。一个字被定义为由空白、跳格或换行字符分隔的字符串。
-L 打印最长行的长度。
-help 显示帮助信息
--version 显示版本信息
- wc实现代码
#include<stdio.h>
#include<stdlib.h>
int main(int argc ,char *argv[])
{
char ch;
FILE *fp;
long count=0;
char s[21];
if ((fp=fopen(argv[1],"r+"))==NULL)
{
fprintf(stderr,"不能打开文件\"%s\"\n",argv[1]);
exit(EXIT_FAILURE);
}
while(fscanf(fp,"%s",s)!=EOF)
{
if((s[0]>='a'&&s[0]<='z')||(s[0]<='Z'&&s[0]>='A'))
count++;
}
fclose(fp);
printf("File %s has %ld characters\n",argv[1],count);
return 0;
}
服务器端与客户端实现代码
运行结果:
实验二
使用多线程实现wc服务器并使用同步互斥机制保证计数正确
上方提交代码
下方提交测试
对比单线程版本的性能,并分析原因
在开始前,需要了解一下同步和互斥的区别:
1.互斥是指某一资源同时只允许一个访问者对其进行访问,具有唯一性和排它性。但互斥无法限制访问者对资源的访问顺序,即访问是无序的。
2.同步是指在互斥的基础上(大多数情况),通过其它机制实现访问者对资源的有序访问。
3.同步其实已经实现了互斥,所以同步是一种更为复杂的互斥。
4.互斥是一种特殊的同步。
参考【Linux多线程】同步与互斥的区别
互斥锁
互斥锁是一种通过简单的加锁的方法来控制对共享资源的存取,用于解决线程间资源访问的唯一性问题。互斥锁有上锁和解锁两种状态,在同一时刻只能有一个线程掌握某个互斥的锁,拥有上锁状态的线程可以对共享资源进行操作。若其他线程希望对一个已经上了锁的互斥锁上锁,则该线程会被挂起,直到上锁的线程释放掉互斥锁为止。
代码
客户端
#include<netinet/in.h> // for sockaddr_in
#include<sys/types.h> // for socket
#include<sys/socket.h> // for socket
#include<stdio.h> // for printf
#include<stdlib.h> // for exit
#include<string.h> // for bzero
#define HELLO_WORLD_SERVER_PORT 155312
#define BUFFER_SIZE 1024
#define FILE_NAME_MAX_SIZE 512
int mywc(char file_name[],int choose);
int main(int argc, char **argv)
{
FILE *fp;
if (argc != 2)
{
printf("Usage: ./%s ServerIPAddress\n", argv[0]);
exit(1);
}
// 设置一个socket地址结构client_addr, 代表客户机的internet地址和端口
struct sockaddr_in client_addr;
bzero(&client_addr, sizeof(client_addr));
client_addr.sin_family = AF_INET; // internet协议族
client_addr.sin_addr.s_addr = htons(INADDR_ANY); // INADDR_ANY表示自动获取本机地址
client_addr.sin_port = htons(0); // auto allocated, 让系统自动分配一个空闲端口
// 创建用于internet的流协议(TCP)类型socket,用client_socket代表客户端socket
int client_socket = socket(AF_INET, SOCK_STREAM, 0);
if (client_socket < 0)
{
printf("Create Socket Failed!\n");
exit(1);
}
// 把客户端的socket和客户端的socket地址结构绑定
if (bind(client_socket, (struct sockaddr*)&client_addr, sizeof(client_addr)))
{
printf("Client Bind Port Failed!\n");
exit(1);
}
// 设置一个socket地址结构server_addr,代表服务器的internet地址和端口
struct sockaddr_in server_addr;
bzero(&server_addr, sizeof(server_addr));
server_addr.sin_family = AF_INET;
// 服务器的IP地址来自程序的参数
if (inet_aton(argv[1], &server_addr.sin_addr) == 0)
{
printf("Server IP Address Error!\n");
exit(1);
}
server_addr.sin_port = htons(HELLO_WORLD_SERVER_PORT);
socklen_t server_addr_length = sizeof(server_addr);
// 向服务器发起连接请求,连接成功后client_socket代表客户端和服务器端的一个socket连接
if (connect(client_socket, (struct sockaddr*)&server_addr, server_addr_length) < 0)
{
printf("Can Not Connect To %s!\n", argv[1]);
exit(1);
}
char file_name[FILE_NAME_MAX_SIZE + 1];
bzero(file_name, sizeof(file_name));
printf("Please Input File Name.\t");
scanf("%s", file_name);
if((fp = fopen(file_name,"r"))==NULL)
{
printf("Failure to open %s\n",file_name);
exit(0);
}
char buffer[BUFFER_SIZE];
bzero(buffer, sizeof(buffer));
strcpy(buffer,file_name);
if(send(client_socket,buffer,BUFFER_SIZE,0)==-1)
{
printf("发送文件名失败\n");
}
char ch;
int i=0;
while((ch=fgetc(fp))!=EOF)
{
buffer[i++]=ch;
if(i>=BUFFER_SIZE)
{
if((send(client_socket, buffer, BUFFER_SIZE, 0))==-1)
{
printf("发送文件失败\n");
}
bzero(buffer, sizeof(buffer));
i=0;
}
}
if(i<BUFFER_SIZE)
{
if((send(client_socket, buffer, i, 0))==-1)
{
printf("发送文件失败\n");
}
}
printf("发送%s完毕\n",file_name);
mywc(file_name,1);
mywc(file_name,2);
// 向服务器发送buffer中的数据,此时buffer中存放的是客户端需要接收的文件
//以下接收服务器发来的单词个数
bzero(buffer, sizeof(buffer));
fclose(fp);
close(client_socket);
return 0;
}
int mywc(char file_name[],int choose)
{
FILE *fp;
char ch;
int flag=0,num=0;
if((fp = fopen(file_name,"r"))==NULL)
{
printf("Failure to open %s\n",file_name);
exit(0);
}
if(choose==1)
{
while((ch=fgetc(fp))!=EOF)
{
if(ch==' ' || ch=='\n' || ch=='\t' || ch=='\!' || ch=='\?' || ch=='\"' || ch=='\.' || ch== '\,' || ch=='\:' || ch=='\(' || ch=='\)' || ch=='\;' || ch=='\-')
{
flag=0;
}
else
{
if(flag==0)
{
flag=1;
num++;
}
}
}
}
else if(choose==2)
{
while((ch=fgetc(fp))!=EOF)
{
if(ch==' ' || ch=='\n' || ch=='\t' || ch=='\r')
flag=0;
else
{
if(flag==0)
{
flag=1;
num++;
}
}
}
}
printf("单词个数为:%d_用方式%d计算\n",num,choose);
fclose(fp);
return num;
}
服务器
#include<netinet/in.h>
#include<sys/types.h>
#include<sys/socket.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<pthread.h>
#define HELLO_WORLD_SERVER_PORT 155312
#define LENGTH_OF_LISTEN_QUEUE 20
#define BUFFER_SIZE 1024
#define FILE_NAME_MAX_SIZE 512
void *process_client(void *new_server_socket);
int mywc(char file_name[])
{
char ch;
int flag=0,num=0;
int choose;
FILE *fp;
printf("统计单词个数还是实现“wc -w”?(1or2)\n");
scanf("%d",&choose);
if((fp = fopen(file_name,"r"))==NULL)
{
printf("Failure to open %s\n",file_name);
exit(0);
}
if(choose==1)
{
while((ch=fgetc(fp))!=EOF)
{
if(ch==' ' || ch=='\n' || ch=='\t' || ch=='\!' || ch=='\?' || ch=='\"' || ch=='\.' || ch== '\,' || ch=='\:' || ch=='\(' || ch=='\)' || ch=='\;' || ch=='\-')
{
flag=0;
}
else
{
if(flag==0)
{
flag=1;
num++;
}
}
}
}
else if(choose==2)
{
while((ch=fgetc(fp))!=EOF)
{
if(ch==' ' || ch=='\n' || ch=='\t' || ch=='\r')
flag=0;
else
{
if(flag==0)
{
flag=1;
num++;
}
}
}
}
printf("单词个数为:%d\n",num);
fclose(fp);
return num;
}
int main(int argc, char **argv)
{
// set socket's address information
// 设置一个socket地址结构server_addr,代表服务器internet的地址和端口
struct sockaddr_in server_addr;
bzero(&server_addr, sizeof(server_addr));
server_addr.sin_family = AF_INET;
server_addr.sin_addr.s_addr = htons(INADDR_ANY);
server_addr.sin_port = htons(HELLO_WORLD_SERVER_PORT);
// create a stream socket
// 创建用于internet的流协议(TCP)socket,用server_socket代表服务器向客户端提供服务的接口
int server_socket = socket(PF_INET, SOCK_STREAM, 0);
if (server_socket < 0)
{
printf("Create Socket Failed!\n");
exit(1);
}
// 把socket和socket地址结构绑定
if (bind(server_socket, (struct sockaddr*)&server_addr, sizeof(server_addr)))
{
printf("Server Bind Port: %d Failed!\n", HELLO_WORLD_SERVER_PORT);
exit(1);
}
// server_socket用于监听
if (listen(server_socket, LENGTH_OF_LISTEN_QUEUE))
{
printf("Server Listen Failed!\n");
exit(1);
}
// 服务器端一直运行用以持续为客户端提供服务
while(1)
{
// 定义客户端的socket地址结构client_addr,当收到来自客户端的请求后,调用accept
// 接受此请求,同时将client端的地址和端口等信息写入client_addr中
struct sockaddr_in client_addr;
socklen_t length = sizeof(client_addr);
int new_server_socket = accept(server_socket, (struct sockaddr*)&client_addr, &length);
printf("连接到客户端\n");
if (new_server_socket < 0)
{
printf("Server Accept Failed!\n");
}
//添加进程相关代码
pthread_t pid;
if(pthread_create(&pid, NULL, process_client,(void *) &new_server_socket) < 0){
printf("pthread_create error\n");
}
}
// close(server_socket);
}
void *process_client(void *new_server_socket)
{
int sockid=*(int *)new_server_socket;
FILE *fp;
//接受来自客户端的文件
char buffer[BUFFER_SIZE];
char file_name[FILE_NAME_MAX_SIZE];
bzero(buffer, sizeof(buffer));
int length=0;
if(recv(sockid,buffer,BUFFER_SIZE, 0)==-1)
{
printf("接受文件名%s失败\n",buffer);
}
strcpy(file_name,buffer);
strcat(file_name,"-server");
if((fp = fopen(file_name,"w"))==NULL)
{
printf("Failure to open %s\n",file_name);
exit(0);
}
while( length = recv(sockid, buffer, BUFFER_SIZE, 0))
{
if(length<0)
{
printf("接受文件出错\n");
exit(0);
}
if(fwrite(buffer,sizeof(char),length,fp)<length)
{
printf("写文件失败\n");
}
bzero(buffer, BUFFER_SIZE);
}
fclose(fp);
printf("接受文件完毕\n");
int number=0;
number=mywc(file_name);
bzero(buffer, BUFFER_SIZE);
buffer[0]=number+48;
bzero(buffer, sizeof(buffer));
printf("File Transfer Finished!\n");
close(new_server_socket);
}
运行截图
实验三由于实验室设备问题,所以取消了
新学到的知识点
了解了多线程的优点:多线程技术使程序的响应速度更快 ,因为用户界面可以在进行其它工作的同时一直处于活动状态。有多个线程,线程间独立运行,能有效地避免代码阻塞,并且提高程序的运行性能。