LouZhang

导航

混合图欧拉路径问题

题目:http://poj.org/problem?id=1637

这是转载的  http://www.cnblogs.com/destinydesigner/archive/2009/09/28/1575674.html

1 定义

欧拉通路 (Euler tour)——通过图中每条边一次且仅一次,并且过每一顶点的通路。
欧拉回路 (Euler circuit)——通过图中每条边一次且仅一次,并且过每一顶点的回路。
欧拉图——存在欧拉回路的图。

2 无向图是否具有欧拉通路或回路的判定

G有欧拉通路的充分必要条件为:G 连通,G中只有两个奇度顶点(它们分别是欧拉通路的两个端点)。
G有欧拉回路(G为欧拉图):G连通,G中均为偶度顶点。

3 有向图是否具有欧拉通路或回路的判定

D有欧拉通路:D连通,除两个顶点外,其余顶点的入度均等于出度,这两个特殊的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1。
D有欧拉回路(D为欧拉图):D连通,D中所有顶点的入度等于出度。

4 混合图。混合图也就是无向图与有向图的混合,即图中的边既有有向边也有无向边。

5 混合图欧拉回路

混合图欧拉回路用的是网络流。
把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。
现在每个点入度和出度之差均为偶数。将这个偶数除以2,得x。即是说,对于每一个点,只要将x条边反向(入>出就是变入,出>入就是变出),就能保证出 = 入。如果每个点都是出 = 入,那么很明显,该图就存在欧拉回路。
现在的问题就变成了:该改变哪些边,可以让每个点出 = 入?构造网络流模型。有向边不能改变方向,直接删掉。开始已定向的无向边,定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入 > 出的点u,连接边(u, t)、容量为x,对于出 > 入的点v,连接边(s, v),容量为x(注意对不同的点x不同。当初由于不小心,在这里错了好几次)。之后,察看是否有满流的分配。有就是能有欧拉回路,没有就是没有。查看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度 = 出度的欧拉图。
由于是满流,所以每个入 > 出的点,都有x条边进来,将这些进来的边反向,OK,入 = 出了。对于出 > 入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出 > 入,和t连接的条件是入 > 出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入 = 出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。
所以,就这样,混合图欧拉回路问题,解了。

posted on 2012-08-20 16:43  louzhang_swk  阅读(972)  评论(1编辑  收藏  举报