进程和线程

相信不仅仅是操作系统中才会有进程和线程的概念,Java中也有进程和线程的概念,Thread线程。下面我来从面试需要掌握的角度讲讲进程与线程的区别。

 

先来讲讲基本的一些概念:

什么是计算机资源

经典的冯诺依曼结构把计算机系统抽象成 CPU + 存储器 + IO,那么计算机资源无非就两种:

1. 计算资源

2. 存储资源

CPU是计算单元,单纯从CPU的角度来说它是一个黑盒,它只对输入的指令和数据进行计算,然后输出结果,它不负责管理计算哪些”指令和数据“。 换句话说CPU只提供了计算能力,不会区分此时应该轮到执行哪个进程的计算,只要将指令和数据给我,我就计算。所以,分配计算资源的任务就轮到操作系统负责,也就是常说的操作系统的调度模块,由操作系统按照一定的规则来分配什么时候由谁来获得CPU的计算资源,比如分时间片。 

存储资源就是内存,磁盘这些存储设备的资源。操作系统使用了虚拟内存机制来管理存储器,从缓存原理的角度来说,把内存作为磁盘的缓存。进程是面向磁盘的,为什么这么说呢,进程表示一个运行的程序,程序的代码段,数据段这些都是存放在磁盘中的,在运行时加载到内存中。所以虚拟内存面向的是磁盘,虚拟页是对磁盘文件的分配,然后被缓存到物理内存的物理页中。

所以存储资源是操作系统由虚拟内存机制来管理和分配的。而进程又独自享有自己的虚拟内存地址,这也就是为什么进程是分配和管理资源的基本单位。

 

进程:

进程是对计算机的一种抽象,

1. 进程表示一个逻辑控制流,就是一种计算过程,它造成一个假象,好像这个进程一直在独占CPU资源

2. 进程拥有一个独立的虚拟内存地址空间,它造成一个假象,好像这个进程一直在独占存储器资源

进程状态:进程有三个状态,就绪、运行和阻塞。就绪状态其实就是获取了出cpu外的所有资源,只要处理器分配资源就可以马上执行。就绪状态有排队序列什么的,排队原则不再赘述。运行态就是获得了处理器分配的资源,程序开始执行。阻塞态,当程序条件不够时候,需要等待条件满足时候才能执行,如等待i/o操作时候,此刻的状态就叫阻塞态。

简单的来讲进程的概念主要有两点第一,进程是一个实体。每一个进程都有它自己的虚拟内存地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内存;堆栈区域存储着活动过程调用的指令和本地变量。

第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体,我们称其为进程。

 

fork系统调用

操作系统利用fork系统调用来创建一个子进程。fork所创建的子进程会复制父进程的虚拟地址空间。

要理解“复制”和“共享”的区别,复制的意思是会真正在物理内存复制一份内容,会真正消耗新的物理内存。共享的意思是使用指针指向同一个地址,不会真正的消耗物理内存。理解这两个概念的区别很重要,这是进程和线程的根本区别之一。

那么有人问了如果我父进程占了1G的物理内存,那么fork会再使用1G的物理内存来复制吗,相当于一下用了2G的物理内存? 

答案是早期的操作系统的确是这么干的,但是这样性能也太差了,所以现代操作系统使用了 写时复制(Copy on write)的方式来优化fork的性能,fork刚创建的子进程采用了共享的方式,只用指针指向了父进程的物理资源。当子进程真正要对某些物理资源写操作时,才会真正的复制一块物理资源来供子进程使用。这样就极大的优化了fork的性能,并且从逻辑来说子进程的确是拥有了独立的虚拟内存空间。

fork不只是复制了页表结构,还复制了父进程的文件描述符表,信号控制表,进程信息,寄存器资源等等。它是一个较为深入的复制。

进程上下文切换保存的内容有:

页表 -- 对应虚拟内存资源

文件描述符表/打开文件表 -- 对应打开的文件资源

寄存器 -- 对应运行时数据

信号控制信息/进程运行信息

 

进程间通信

虚拟内存机制为进程管理存储资源带来了种种好处,但是它也给进程带来了一些小麻烦,我们知道每个进程拥有独立的虚拟内存地址空间,所以对不同的进程来说,一个相同的虚拟地址意味着不同的物理地址。我们知道CPU执行指令时采用了虚拟地址,对应一个特定的变量来说,它对应着一个特定的虚拟地址。这样带来的问题就是两个进程不能通过简单的共享内存的方式来进行进程间通信,也就是说进程不能通过直接共享内存的方式来进行进程间通信,只能采用信号,管道等方式来进行进程间通信。这样的效率肯定比直接共享内存的方式差

 

线程:

我们知道进程管理了一堆资源,并且每个进程还拥有独立的虚拟内存地址空间,会真正地拥有独立与父进程之外的物理内存。并且由于进程拥有独立的内存地址空间,导致了进程之间无法利用直接的内存映射进行进程间通信。并发的本质是在时间上重叠的多个逻辑流,也就是说同时运行的多个逻辑流。并发编程要解决的一个很重要的问题就是对资源的并发访问的问题,也就是共享资源的问题。而两个进程恰恰很难在逻辑上表示共享资源。

线程解决的最大问题就是它可以很简单地表示共享资源的问题,这里说的资源指的是存储器资源,资源最后都会加载到物理内存,一个进程的所有线程都是共享这个进程的同一个虚拟地址空间的,也就是说从线程的角度来说,它们看到的物理资源都是一样的,这样就可以通过共享变量的方式来表示共享资源,也就是直接共享内存的方式解决了线程通信的问题。而线程也表示一个独立的逻辑流,这样就完美解决了进程的一个大难题。

线程,在网络或多用户环境下,一个服务器通常需要接收大量且不确定数量用户的并发请求,为每一个请求都创建一个进程显然是行不通的,——无论是从系统资源开销方面或是响应用户请求的效率方面来看。因此,操作系统中线程的概念便被引进了。线程,是进程的一部分,一个没有线程的进程可以被看作是单线程的。线程有时又被称为轻权进程或轻量级进程,也是 CPU 调度的一个基本单位。

 

线程上下文切换保存的内容有:

既然线程共享了进程的资源,那么线程的上下文切换就好理解了。对操作系统来说,它看到要被调度进来的线程和刚运行的线程是同一个进程的,那么线程的上下文切换只需要保存线程的一些运行时的数据,比如

线程的id

寄存器中的值

栈数据

而不需要像进程上下文切换那样要保存页表,文件描述符表,信号控制数据和进程信息等数据。页表是一个很重的资源,我们之前说过,如果采用一级页表的结构,那么32位机器的页表要达到4MB的物理空间。 所以线程上下文切换是很轻量级的。

 

进程和线程的通信机制:

进程间通信

进程间的通信,它的数据空间的独立性(独立的虚拟内存空间)决定了它的通信相对比较复杂,需要通过操作系统。以前进程间的通信只能是单机版的,现在操作系统都继承了基于套接字(socket)的进程间的通信机制。这样进程间的通信就不局限于单台计算机了,实现了网络通信。
进程的通信机制主要有:管道、命名管道、消息队列、信号量、共享空间、信号、套接字。

1.信号

信号是在软件层次上对中断机制的一种模拟,在原理上,一个进程收到一个信号与处理器收到一个中断请求可以说是一样的。信号是异步的,一个进程不必通过任何操作来等待信号的到达,事实上,进程也不知道信号到底什么时候到达。信号是进程间通信机制中唯一的异步通信机制,可以看作是异步通知,通知接收信号的进程有哪些事情发生了。信号机制经过POSIX实时扩展后,功能更加强大,除了基本通知功能外,还可以传递附加信息。信号事件的发生有两个来源:硬件来源(比如我们按下了键盘或者其它硬件故障);软件来源。
信号分为可靠信号和不可靠信号,实时信号和非实时信号。
进程有三种方式响应信号:
  • 忽略信号
  • 捕捉信号
  • 执行缺省操作

2.信号量

信号量也可以说是一个计数器,常用来处理进程或线程同步的问题,特别是对临界资源的访问同步问题。临界资源:为某一时刻只能由一个进程或线程操作的资源,当信号量的值大于或等于0时,表示可以供并发进程访问的临界资源数,当小于0时,表示正在等待使用临界资源的进程数。更重要的是,信号量的值仅能由PV操作来改变。

3.消息队列

消息队列是存放在内核中的消息链表,每个消息队列由消息队列标识符标识,与管道不同的是,消息队列存放在内核中,只有在内核重启时才能删除一个消息队列,内核重启也就是系统重启,同样消息队列的大小也是受限制的。

4.共享内存

共享内存就是分配一块能被其他进程访问的内存。共享内存可以说是最有用的进程间通信方式,也是最快的IPC形式。首先说下在使用共享内存区前,必须通过系统函数将其附加到进程的地址空间或说为映射到进程空间。两个不同进程A、B共享内存的意思是,同一块物理内存被映射到进程A、B各自的进程地址空间。进程A可以即时看到进程B对共享内存中数据的更新,反之亦然。由于多个进程共享同一块内存区域,必然需要某种同步机制,互斥锁和信号量都可以。采用共享内存通信的一个显而易见的好处是效率高,因为进程可以直接读写内存,而不需要任何数据的拷贝。对于像管道和消息队列等通信方式,则需要在内核和用户空间进行四次的数据拷贝,而共享内存则只拷贝两次数据:一次从输入文件到共享内存区,另一次从共享内存区到输出文件。实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建立共享内存区域。而是保持共享区域,直到通信完毕为止,这样,数据内容一直保存在共享内存中,并没有写回文件。共享内存中的内容往往是在解除映射时才写回文件的。因此,采用共享内存的通信方式效率是非常高的。

5.管道

管道传递数据是单向性的,只能从一方流向另一方,也就是一种半双工的通信方式;只用于有亲缘关系的进程间的通信,亲缘关系也就是父子进程或兄弟进程;没有名字并且大小受限,传输的是无格式的流,所以两进程通信时必须约定好数据通信的格式。管道它就像一个特殊的文件,但这个文件之存在于内存中,在创建管道时,系统为管道分配了一个页面作为数据缓冲区,进程对这个数据缓冲区进行读写,以此来完成通信。其中一个进程只能读一个只能写,所以叫半双工通信,为什么一个只能读一个只能写呢?因为写进程是在缓冲区的末尾写入,读进程是在缓冲区的头部读取,他们各自的数据结构不同,所以功能不同。

6.命名管道

命名管道(NamedPipe)是服务器进程和一个或多个客户进程之间通信的单向或双向管道。不同于匿名管道的是:命名管道可以在不相关的进程之间和不同计算机之间使用,服务器建立命名管道时给它指定一个名字,任何进程都可以通过该名字打开管道的另一端,根据给定的权限和服务器进程通信。命名管道提供了相对简单的编程接口,使通过网络传输数据并不比同一计算机上两进程之间通信更困难,不过如果要同时和多个进程通信它就力不从心了。
命名管道不同于管道只能在具有亲缘关系的进程间通信了。它提供了一个路径名与之关联,有了自己的传输格式。
命名管道和管道的不同之处还有一点是,命名管道是个设备文件,存储在文件系统中,没有亲缘关系的进程也可以访问,但是它要按照先进先出的原则读取数据。同样也是单双工的。

7.套接字

套接字也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同主机间的进程通信。

线程间通信

线程间通信:由于多线程共享地址空间和数据空间,所以多个线程间的通信是一个线程的数据可以直接提供给其他线程使用,而不必通过操作系统(也就是内核的调度)。

1.锁机制

包括互斥锁、条件变量、读写锁;
互斥锁提供了以排他方式防止数据结构被并发修改的方法。
使用条件变量可以以原子的方式阻塞进程,直到某个特定条件为真为止。对条件的测试是在互斥锁的保护下进行的。条件变量始终与互斥锁一起使用。
读写锁允许多个线程同时读共享数据,而对写操作是互斥的。

2.信号量机制(Semaphore)

包括无名线程信号量和命名线程信号量

3.信号机制(Signal)

类似进程间的信号处理,线程间的通信目的主要是用于线程同步。所以线程没有像进程通信中的用于数据交换的通信机制。
 

进程与线程的区别:

进程和线程的主要差别在于它们是不同的操作系统资源管理方式。进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其它进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程之间没有单独的物理地址空间,一个线程死掉就等于整个进程死掉所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差一些,上面提到过。但对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。

1) 一个程序至少有一个进程,一个进程至少有一个线程.

2) 线程的划分尺度小于进程,使得多线程程序的并发性高。

3) 另外,进程在执行过程中拥有独立的内存单元,而多个线程共享内存,从而极大地提高了程序的运行效率。

4) 线程在执行过程中与进程还是有区别的。每个独立的线程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

5) 从逻辑角度来看,多线程的意义在于一个应用程序中,有多个执行部分可以同时执行。但操作系统并没有将多个线程看做多个独立的应用,来实现进程的调度和管理以及资源分配。

6)线程执行开销小,但不利于资源的管理和保护;而进程正相反。同时,线程适合于在SMP(多核处理机)机器上运行,而进程则可以跨机器迁移。

 

参考文献:

深入理解进程和线程

进程、线程、多线程相关总结

进程间通信与线程间通信

 

posted @ 2017-09-04 10:53  傍晚的羔羊  阅读(496)  评论(0编辑  收藏  举报