增广拉格朗日乘子法(Augmented Lagrange Method)
增广拉格朗日乘子法的作用是用来解决等式约束下的优化问题,
假定需要求解的问题如下:
minimize f(X)
s.t.: h(X)=0
其中,f:Rn->R; h:Rn->Rm
朴素拉格朗日乘子法的解决方案是:
L(X,λ)=f(X)+μh(X); μ:Rm
此时,求解L对X和μ的偏导同时为零就可以得到最优解了。
增广拉格朗日乘子法的解决方案是:
Lc(x,λ)=f(X)+μh(X)+1/2c|h(X)|2
每次求出一个xi,然后按照梯度更新参数μ,c每次迭代逐渐增大(使用ALM方法好像还有一些假设条件)
整个流程只需要几步就可以完成了,一直迭代就可得到最优解了。
参考文献:
[1]Multiplier and Gradient Methods,1969
[2]constrained optimization and lagrange multiplier methods(page 104),1982
如有转载,请注明出处(http://www.cnblogs.com/lochan)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架