hdu 1853(拆点判环+费用流)

Cyclic Tour

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/65535 K (Java/Others)
Total Submission(s): 2257    Accepted Submission(s): 1148


Problem Description
There are N cities in our country, and M one-way roads connecting them. Now Little Tom wants to make several cyclic tours, which satisfy that, each cycle contain at least two cities, and each city belongs to one cycle exactly. Tom wants the total length of all the tours minimum, but he is too lazy to calculate. Can you help him?
 

 

Input
There are several test cases in the input. You should process to the end of file (EOF).
The first line of each test case contains two integers N (N ≤ 100) and M, indicating the number of cities and the number of roads. The M lines followed, each of them contains three numbers A, B, and C, indicating that there is a road from city A to city B, whose length is C. (1 ≤ A,B ≤ N, A ≠ B, 1 ≤ C ≤ 1000).
 

 

Output
Output one number for each test case, indicating the minimum length of all the tours. If there are no such tours, output -1.
 

 

Sample Input
6 9 1 2 5 2 3 5 3 1 10 3 4 12 4 1 8 4 6 11 5 4 7 5 6 9 6 5 4 6 5 1 2 1 2 3 1 3 4 1 4 5 1 5 6 1
 

 

Sample Output
42 -1
Hint
In the first sample, there are two cycles, (1->2->3->1) and (6->5->4->6) whose length is 20 + 22 = 42.
 
 
题意:n个城市,m条路线,现在要对这些城市进行规划,每个城市都要被规划进一个环里面,而且只能出现一次,现在问能否做到?如果能够做到,输出最小路径和.
题解:最小费用最大流+拆点,如果城市在环里面,那么这个点的出度,入度都为1,将一个人拆成 i ,i+n,那么我们就限制了当前的人只能够用一次,然后对i ,j+n 建立关系,跑一遍最小费用最大流即可。如果最大流<n,那么则是无解的.
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std;
const int INF = 999999999;
const int N = 405;
const int M = 80005;
struct Edge{
    int u,v,cap,cost,next;
}edge[M];
int head[N],tot,low[N],pre[N];
int total ;
bool vis[N];
void addEdge(int u,int v,int cap,int cost,int &k){
    edge[k].u=u,edge[k].v=v,edge[k].cap = cap,edge[k].cost = cost,edge[k].next = head[u],head[u] = k++;
    edge[k].u=v,edge[k].v=u,edge[k].cap = 0,edge[k].cost = -cost,edge[k].next = head[v],head[v] = k++;
}
void init(){
    memset(head,-1,sizeof(head));
    tot = 0;
}
bool spfa(int s,int t,int n){
    memset(vis,false,sizeof(vis));
    for(int i=0;i<=n;i++){
        low[i] = (i==s)?0:INF;
        pre[i] = -1;
    }
    queue<int> q;
    q.push(s);
    while(!q.empty()){
        int u = q.front();
        q.pop();
        vis[u] = false;
        for(int k=head[u];k!=-1;k=edge[k].next){
            int v = edge[k].v;
            if(edge[k].cap>0&&low[v]>low[u]+edge[k].cost){
                low[v] = low[u] + edge[k].cost;
                pre[v] = k; ///v为终点对应的边
                if(!vis[v]){
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
    }
    if(pre[t]==-1) return false;
    return true;
}
int MCMF(int s,int t,int n){
    int mincost = 0,minflow,flow=0;
     while(spfa(s,t,n))
    {
        minflow=INF+1;
        for(int i=pre[t];i!=-1;i=pre[edge[i].u])
            minflow=min(minflow,edge[i].cap);
        flow+=minflow;
        for(int i=pre[t];i!=-1;i=pre[edge[i].u])
        {
            edge[i].cap-=minflow;
            edge[i^1].cap+=minflow;
        }
        mincost+=low[t]*minflow;
    }
    total=flow;
    return mincost;
}
int n,m;
int main(){
     while(scanf("%d%d",&n,&m)!=EOF){
        init();
        int src = 0,des = 2*n+1;
        for(int i=1;i<=n;i++){
            addEdge(src,i,1,0,tot);
            addEdge(i+n,des,1,0,tot);
        }
        for(int i=1;i<=m;i++){
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            addEdge(u,v+n,1,w,tot);
        }
        int mincost = MCMF(src,des,2*n+2);
        if(total!=n) printf("-1\n");
        else printf("%d\n",mincost);
     }
}

 

posted @ 2016-08-02 11:21  樱花庄的龙之介大人  阅读(291)  评论(0编辑  收藏  举报