Java线程:条件变量、原子量、线程池等

一、条件变量

  条件变量实现了java.util.concurrent.locks.Condition接口,条件变量的实例化就是通过一个Lock对象上调用newCondition()方法获得的,这样条件就和一个锁绑定起来了。因此,Java中的条件变量只能和锁配合使用,来控制并发程序访问竞争资源的安全。

  条件变量的出现是为了更精细的控制线程等待与唤醒,一个锁可以有多个条件,每个条件上有多个线程等待,通过await()方法,可以让线程在该条件下等待。当调用signalAll()方法时,又可以唤醒该条件下等待的线程。条件变量比较抽象,原因是它不是自然语言中的条件概念,而是控制程序的一种手段。

  看个例子,有一个账户,多个用户(线程)在同时操作这个账户,有的存款有的取款,存款随便存,但取款有限制,不能透支,任何试图透支的操作都将等待里面有足够的存款时才执行操作。

  CaseTest.java

 1 package Thread;
 2 import java.util.*;
 3 import java.util.concurrent.ExecutorService;
 4 import java.util.concurrent.Executors;
 5 import java.util.concurrent.locks.Condition;
 6 import java.util.concurrent.locks.Lock;
 7 import java.util.concurrent.locks.ReentrantLock;
 8 public class CaseTest {
 9     public static void main(String[] args){
10         MyCount1 myCount1=new MyCount1("6516431",10000);
11         ExecutorService pool=Executors.newFixedThreadPool(2);
12         Thread t1=new SaveThread("张三",myCount1,2000);
13         Thread t2=new DrawThread("李四",myCount1,3600);
14         Thread t3=new SaveThread("王二",myCount1,2700);
15         Thread t4=new SaveThread("麻子",myCount1,600);
16         Thread t5=new DrawThread("胖子",myCount1,1300);
17         Thread t6=new DrawThread("小刘",myCount1,800);
18         pool.execute(t1);
19         pool.execute(t2);
20         pool.execute(t3);
21         pool.execute(t4);
22         pool.execute(t5);
23         pool.execute(t6);
24         pool.shutdown();
25     }
26 }
27 class SaveThread extends Thread{
28     private String name;
29     private MyCount1 myCount1;
30     private int x;
31     SaveThread(String name,MyCount1 myCount1,int x){
32         this.name=name;
33         this.myCount1=myCount1;
34         this.x=x;
35     }
36     public void run(){
37         myCount1.saving(x,name);
38     }
39 }
40 class DrawThread extends Thread{
41     private String name;
42     private MyCount1 myCount;
43     private int x;
44     DrawThread(String name,MyCount1 myCount,int x){
45         this.name=name;
46         this.myCount=myCount;
47         this.x=x;
48     }
49     public void run(){
50         myCount.drawing(x,name);
51     }
52 }
53 class MyCount1{
54     private String oid;
55     private int cash;
56     private Lock lock=new ReentrantLock();
57     private Condition _save=lock.newCondition();
58     private Condition _draw=lock.newCondition();
59     MyCount1(String oid,int cash){
60         this.oid=oid;
61         this.cash=cash;
62     }
63     public void saving(int x,String name){
64         lock.lock(); //获取锁 
65         if(x>0){
66             cash+=x;
67             System.out.println(name+"存款"+x+",当前余额为:"+cash);
68         }
69         _draw.signalAll(); //唤醒所有等待线程。 
70         lock.unlock(); //释放锁 
71     }
72     public void drawing(int x,String name){
73         lock.lock();
74         try{
75             if(cash-x<0){
76                 _draw.await();//阻塞取款操作
77             }else{    
78                 cash-=x;
79                 System.out.println(name+"取款"+x+",当前余额为:"+cash);
80             }
81             _save.signalAll();//唤醒所有存款操作
82         }catch(InterruptedException e){
83             e.printStackTrace();
84         }finally{
85             lock.unlock();
86         }
87     }
88 }
View Code

  结果为:

1 李四取款3600,当前余额为:6400
2 张三存款2000,当前余额为:8400
3 王二存款2700,当前余额为:11100
4 麻子存款600,当前余额为:11700
5 胖子取款1300,当前余额为:10400
6 小刘取款800,当前余额为:9600
View Code

  如果不用条件变量和锁,如何实现此功能呢?

  CaseTest.java

 1 package Thread;
 2 import java.util.*;
 3 import java.util.concurrent.ExecutorService;
 4 import java.util.concurrent.Executors;
 5 import java.util.concurrent.locks.Condition;
 6 import java.util.concurrent.locks.Lock;
 7 import java.util.concurrent.locks.ReentrantLock;
 8 public class CaseTest {
 9     public static void main(String[] args){
10         MyCount1 myCount1=new MyCount1("6516431",10000);
11         ExecutorService pool=Executors.newFixedThreadPool(2);
12         Thread t1=new SaveThread("张三",myCount1,2000);
13         Thread t2=new DrawThread("李四",myCount1,3600);
14         Thread t3=new SaveThread("王二",myCount1,2700);
15         Thread t4=new SaveThread("麻子",myCount1,600);
16         Thread t5=new DrawThread("胖子",myCount1,1300);
17         Thread t6=new DrawThread("小刘",myCount1,800);
18         pool.execute(t1);
19         pool.execute(t2);
20         pool.execute(t3);
21         pool.execute(t4);
22         pool.execute(t5);
23         pool.execute(t6);
24         pool.shutdown();
25     }
26 }
27 class SaveThread extends Thread{
28     private String name;
29     private MyCount1 myCount1;
30     private int x;
31     SaveThread(String name,MyCount1 myCount1,int x){
32         this.name=name;
33         this.myCount1=myCount1;
34         this.x=x;
35     }
36     public void run(){
37         myCount1.saving(x,name);
38     }
39 }
40 class DrawThread extends Thread{
41     private String name;
42     private MyCount1 myCount;
43     private int x;
44     DrawThread(String name,MyCount1 myCount,int x){
45         this.name=name;
46         this.myCount=myCount;
47         this.x=x;
48     }
49     public void run(){
50         myCount.drawing(x,name);
51     }
52 }
53 class MyCount1{
54     private String oid;
55     private int cash;
56     MyCount1(String oid,int cash){
57         this.oid=oid;
58         this.cash=cash;
59     }
60     public synchronized void saving(int x,String name){
61         if(x>0){
62             cash+=x;
63             System.out.println(name+"存款"+x+",当前余额为:"+cash);
64         }
65             notifyAll();
66         //_draw.signalAll(); //唤醒所有等待线程。 
67         //lock.unlock(); //释放锁 
68     }
69     public synchronized void drawing(int x,String name){
70         if(cash-x<0){
71             try{
72                 wait();
73             }
74             catch(InterruptedException e){
75                 e.printStackTrace();
76             }
77         }else{    
78             cash-=x;
79             System.out.println(name+"取款"+x+",当前余额为:"+cash);
80             }
81     notifyAll();
82 
83     }
84 }
View Code

  第二种方式是用同步方法的第一种方法,以前说过这种方法不如第二种好,下面改进一下该同步的程序:

  CaseTest.java

 1 package Thread;
 2 import java.util.*;
 3 import java.util.concurrent.ExecutorService;
 4 import java.util.concurrent.Executors;
 5 import java.util.concurrent.locks.Condition;
 6 import java.util.concurrent.locks.Lock;
 7 import java.util.concurrent.locks.ReentrantLock;
 8 public class CaseTest {
 9     public static void main(String[] args){
10         MyCount1 myCount1=new MyCount1("6516431",10000);
11         ExecutorService pool=Executors.newFixedThreadPool(2);
12         Thread t1=new SaveThread("张三",myCount1,2000);
13         Thread t2=new DrawThread("李四",myCount1,3600);
14         Thread t3=new SaveThread("王二",myCount1,2700);
15         Thread t4=new SaveThread("麻子",myCount1,600);
16         Thread t5=new DrawThread("胖子",myCount1,1300);
17         Thread t6=new DrawThread("小刘",myCount1,800);
18         pool.execute(t1);
19         pool.execute(t2);
20         pool.execute(t3);
21         pool.execute(t4);
22         pool.execute(t5);
23         pool.execute(t6);
24         pool.shutdown();
25     }
26 }
27 class SaveThread extends Thread{
28     private String name;
29     private MyCount1 myCount1;
30     private int x;
31     SaveThread(String name,MyCount1 myCount1,int x){
32         this.name=name;
33         this.myCount1=myCount1;
34         this.x=x;
35     }
36     public void run(){
37         myCount1.saving(x,name);
38     }
39 }
40 class DrawThread extends Thread{
41     private String name;
42     private MyCount1 myCount;
43     private int x;
44     DrawThread(String name,MyCount1 myCount,int x){
45         this.name=name;
46         this.myCount=myCount;
47         this.x=x;
48     }
49     public void run(){
50         myCount.drawing(x,name);
51     }
52 }
53 class MyCount1{
54     private String oid;
55     private int cash;
56     //private Lock lock=new ReentrantLock();
57     //private Condition _save=lock.newCondition();
58     //private Condition _draw=lock.newCondition();
59     MyCount1(String oid,int cash){
60         this.oid=oid;
61         this.cash=cash;
62     }
63     public  void saving(int x,String name){
64         synchronized(this){ 
65             if(x>0){
66                 cash+=x;
67                 System.out.println(name+"存款"+x+",当前余额为:"+cash);
68             }
69             notifyAll();
70         }
71     }
72     public  void drawing(int x,String name){
73         synchronized(this){
74             if(cash-x<0){
75                 try{
76                     wait();
77                 }
78                 catch(InterruptedException e){
79                     e.printStackTrace();
80                 }
81                 }else{    
82                 cash-=x;
83                 System.out.println(name+"取款"+x+",当前余额为:"+cash);
84             }
85             notifyAll();
86             }
87     }
88 }
View Code

二、Volatile变量

  具体的内容,详见 JAVA理论与实践:正确使用Volatile变量

三、原子量

  所谓原子量就是操作变量的操作是“原子的”,该操作不可再分,因此线程是安全的。volatile、synchronized关键字来解决并发访问的安全问题,但这样太麻烦。有一个用来进行单变量多线程并发安全访问的工具包java.util.concurrent.atmoic。

  Test.java

 1 package Thread;
 2 import java.util.concurrent.ExecutorService;
 3 import java.util.concurrent.Executors;
 4 import java.util.concurrent.atomic.AtomicLong;
 5 public class CaseTest {
 6     public static void main(String[] args){
 7         ExecutorService pool=Executors.newFixedThreadPool(2);
 8         Runnable t1=new MyRunnable_2("张三",2000);
 9         Runnable t2=new MyRunnable_2("李四",3600);
10         Runnable t3=new MyRunnable_2("王二",2700);
11         Runnable t4=new MyRunnable_2("麻子",600);
12         Runnable t5=new MyRunnable_2("胖子",1300);
13         Runnable t6=new MyRunnable_2("小刘",800);
14         pool.execute(t1);
15         pool.execute(t2);
16         pool.execute(t3);
17         pool.execute(t4);
18         pool.execute(t5);
19         pool.execute(t6);
20         pool.shutdown();
21     }
22 }
23 class MyRunnable_2 implements Runnable{
24     private static AtomicLong aLong = new AtomicLong(10000);
25     private String name;
26     private int x;
27     MyRunnable_2(String name,int x){
28         this.name=name;
29         this.x=x;
30     }
31     public void run(){
32         System.out.println(name+"执行了"+x+",余额为:"+aLong.addAndGet(x));
33     }
34 }
View Code

  结果为

 1 /**第一种结果**/
 2 张三执行了2000,余额为:12000
 3 王二执行了2700,余额为:14700
 4 麻子执行了600,余额为:15300
 5 胖子执行了1300,余额为:16600
 6 小刘执行了800,余额为:17400
 7 李四执行了3600,余额为:21000
 8 
 9 /**第二种结果**/
10 张三执行了2000,余额为:15600
11 李四执行了3600,余额为:13600
12 王二执行了2700,余额为:18300
13 麻子执行了600,余额为:18900
14 胖子执行了1300,余额为:20200
15 小刘执行了800,余额为:21000
View Code

  这个例子是个反例,可见到虽然使用了原子量,但是并发访问还是有问题,那么问题在哪?原子量虽然可以保证单个变量在某一个操作过程安全,但无法保证整个代码块,或者说整个程序的安全。因此,通常可以使用锁等同步机制控制整个程序的安全性。

  Test.java

 1 package Thread;
 2 import java.util.concurrent.ExecutorService;
 3 import java.util.concurrent.Executors;
 4 import java.util.concurrent.atomic.AtomicLong;
 5 import java.util.concurrent.locks.Lock;
 6 import java.util.concurrent.locks.ReentrantLock;
 7 public class CaseTest {
 8     public static void main(String[] args){
 9         ExecutorService pool=Executors.newFixedThreadPool(2);
10         Lock lock=new ReentrantLock(false);
11         Runnable t1=new MyRunnable_2("张三",2000,lock);
12         Runnable t2=new MyRunnable_2("李四",3600,lock);
13         Runnable t3=new MyRunnable_2("王二",2700,lock);
14         Runnable t4=new MyRunnable_2("麻子",600,lock);
15         Runnable t5=new MyRunnable_2("胖子",1300,lock);
16         Runnable t6=new MyRunnable_2("小刘",800,lock);
17         pool.execute(t1);
18         pool.execute(t2);
19         pool.execute(t3);
20         pool.execute(t4);
21         pool.execute(t5);
22         pool.execute(t6);
23         pool.shutdown();
24     }
25 }
26 class MyRunnable_2 implements Runnable{
27     private static AtomicLong aLong = new AtomicLong(10000);
28     private String name;
29     private int x;
30     private Lock lock;
31     MyRunnable_2(String name,int x,Lock lock){
32         this.name=name;
33         this.x=x;
34         this.lock=lock;
35     }
36     public void run(){
37         lock.lock();
38         System.out.println(name+"执行了"+x+",余额为:"+aLong.addAndGet(x));
39         lock.unlock();
40     }
41 }
View Code

  结果为:

1 张三执行了2000,余额为:12000
2 李四执行了3600,余额为:15600
3 王二执行了2700,余额为:18300
4 胖子执行了1300,余额为:19600
5 麻子执行了600,余额为:20200
6 小刘执行了800,余额为:21000
View Code

此时,加入了一个对象锁,来控制并发访问的控制,不管程序运行多少次,结果都是一样的。有关原子的用法仅仅保证变量操作的原子性,但是需要考虑整个过程的线程安全性。

 四、信号量

  一个信号量管理很多的许可证,为了获取信号量,线程通过调用acquire请求许可。Java信号量实际上是一个功能完毕的计数器,并由此限制了通过的线程数量,其他线程可以通过调用release释放许可。

  它对控制一定资源的消费与回收有着重要意义,信号量常常用于多线程的代码中,并能监控有多少数目的线程等待获取资源,并且通过信号量可以得知可用资源的数目等等,这里强调数目二字,并不是指有哪些在等待,哪些资源可用。例子:

  SignalTest.java

 1 package Thread;
 2 
 3 import java.util.concurrent.ExecutorService;
 4 import java.util.concurrent.Executors;
 5 import java.util.concurrent.Semaphore;
 6 
 7 public class SignalTest {
 8     public static void main(String[] args){
 9         MyPool myPool=new MyPool(20);
10         ExecutorService threadPool=Executors.newFixedThreadPool(2);
11         MyThread_signal t1=new MyThread_signal("任务A",myPool,3);
12         MyThread_signal t2=new MyThread_signal("任务B",myPool,12);
13         MyThread_signal t3=new MyThread_signal("任务C",myPool,7);
14         threadPool.execute(t1);
15         threadPool.execute(t2);
16         threadPool.execute(t3);
17         threadPool.shutdown();
18     }
19 }
20 class MyPool{
21     private Semaphore sp;//池相关的信号量
22     MyPool(int size){this.sp=new Semaphore(size);}
23     public Semaphore getSp(){return sp;}
24     public void setSp(Semaphore sp){this.sp=sp;}
25 }
26 class MyThread_signal extends Thread{
27     private String name;
28     private MyPool myPool;
29     private int x;
30     MyThread_signal(String name,MyPool myPool,int x){
31         this.name=name;
32         this.myPool=myPool;
33         this.x=x;
34     }
35     public void run(){
36         try{
37             myPool.getSp().acquire();
38             System.out.println(name+"成功获取了"+x+"个许可!");
39         }
40         catch(InterruptedException e){e.printStackTrace();}
41         finally{myPool.getSp().release(x);
42                 System.out.println(name+"释放了"+x+"个许可!");}
43     }
44 }
View Code

  结果为:

1 任务A成功获取了3个许可!
2 任务A释放了3个许可!
3 任务C成功获取了7个许可!
4 任务C释放了7个许可!
5 任务B成功获取了12个许可!
6 任务B释放了12个许可!
View Code

  信号量仅仅是对池资源进行监控,但不能 保证线程的安全,因此,应该自己控制线程的安全访问资源。

五、线程池

  线程池的思想还是一种对象池的思想,开辟一块内存空间,里面存放众多的(未死亡)的线程,池中线程执行调度由池管理器来处理。当有线程任务时,从池中取一个,执行完线程对象归池,这样可以避免反复创建线程对象带来的性能开销,节约系统资源。

   线程池分为固定尺寸的线程池、可变尺寸线程池。

1、固定大小的线程池

 1 package Thread;
 2 
 3 import java.util.concurrent.ExecutorService;
 4 import java.util.concurrent.Executors;
 5 
 6 public class Test1 {
 7     public static void main(String[] args){
 8         ExecutorService pool=Executors.newFixedThreadPool(2);
 9         Thread t1=new MyThread_test();
10         Thread t2=new MyThread_test();
11         Thread t3=new MyThread_test();
12         Thread t4=new MyThread_test();
13         pool.execute(t1);
14         pool.execute(t2);
15         pool.execute(t3);
16         pool.execute(t4);
17         pool.shutdown();
18     }
19 }
20 class MyThread_test extends Thread{
21     public void run(){
22         System.out.println(Thread.currentThread().getName()+"正在执行。。");
23     }
24 }
View Code
1 pool-1-thread-1正在执行。。
2 pool-1-thread-2正在执行。。
3 pool-1-thread-1正在执行。。
4 pool-1-thread-2正在执行。。
View Code

2、单任务线程池

   在上一例修改一行pool对象的代码为:

1 ExecutorService pool=Executors.newSingleThreadExecutor();
1 pool-1-thread-1正在执行。。
2 pool-1-thread-1正在执行。。
3 pool-1-thread-1正在执行。。
4 pool-1-thread-1正在执行。。

  以上两种情况都是大小固定的,当要加入的池的线程(或任务)超过池最大尺寸的时候,则入此线程池需要排队等待。

3、可变尺寸的线程池

1 ExecutorService pool=Executors.newCachedThreadPool();
pool-1-thread-1正在执行。。
pool-1-thread-4正在执行。。
pool-1-thread-3正在执行。。
pool-1-thread-2正在执行。。

4、延迟线程池

 1 package Thread;
 2 
 3 import java.util.concurrent.ExecutorService;
 4 import java.util.concurrent.Executors;
 5 import java.util.concurrent.ScheduledExecutorService;
 6 import java.util.concurrent.TimeUnit;
 7 
 8 public class Test1 {
 9     public static void main(String[] args){
10         //ExecutorService pool=Executors.newFixedThreadPool(2);
11         //ExecutorService pool=Executors.newSingleThreadExecutor();
12         //ExecutorService pool=Executors.newCachedThreadPool();
13         ScheduledExecutorService pool=Executors.newScheduledThreadPool(2);
14         Thread t1=new MyThread_test();
15         Thread t2=new MyThread_test();
16         Thread t3=new MyThread_test();
17         Thread t4=new MyThread_test();
18         Thread t5=new MyThread_test();
19         Thread t6=new MyThread_test();
20         pool.execute(t1);
21         pool.execute(t2);
22         pool.execute(t3);
23         pool.execute(t4);
24         pool.schedule(t5,10,TimeUnit.MILLISECONDS);
25         pool.schedule(t6,10,TimeUnit.MILLISECONDS);
26         pool.shutdown();
27     }
28 }
29 class MyThread_test extends Thread{
30     public void run(){
31         System.out.println(Thread.currentThread().getName()+"正在执行。。");
32     }
33 }
View Code
1 pool-1-thread-1正在执行。。
2 pool-1-thread-2正在执行。。
3 pool-1-thread-1正在执行。。
4 pool-1-thread-1正在执行。。
5 pool-1-thread-2正在执行。。
6 pool-1-thread-1正在执行。。
View Code

5、单任务延迟线程池

  在4的代码基础上修改为:

1 ScheduledExecutorService pool=Executors.newSingleThreadScheduledExecutor();
1 pool-1-thread-1正在执行。。
2 pool-1-thread-1正在执行。。
3 pool-1-thread-1正在执行。。
4 pool-1-thread-1正在执行。。
5 pool-1-thread-1正在执行。。
6 pool-1-thread-1正在执行。。
View Code

6、自定义线程池

 1 package Thread;
 2 
 3 import java.util.concurrent.ArrayBlockingQueue;
 4 import java.util.concurrent.BlockingQueue;
 5 import java.util.concurrent.ExecutorService;
 6 import java.util.concurrent.Executors;
 7 import java.util.concurrent.ScheduledExecutorService;
 8 import java.util.concurrent.ThreadPoolExecutor;
 9 import java.util.concurrent.TimeUnit;
10 
11 public class Test1 {
12     public static void main(String[] args){
13         //ExecutorService pool=Executors.newFixedThreadPool(2);
14         //ExecutorService pool=Executors.newSingleThreadExecutor();
15         //ExecutorService pool=Executors.newCachedThreadPool();
16         //ScheduledExecutorService pool=Executors.newScheduledThreadPool(2);
17         //ScheduledExecutorService pool=Executors.newSingleThreadScheduledExecutor();
18         BlockingQueue<Runnable>bqueue=new ArrayBlockingQueue<Runnable>(20);
19         ThreadPoolExecutor pool=new ThreadPoolExecutor(2,3,2,TimeUnit.MILLISECONDS,bqueue);
20         
21         Thread t1=new MyThread_test();
22         Thread t2=new MyThread_test();
23         Thread t3=new MyThread_test();
24         Thread t4=new MyThread_test();
25         Thread t5=new MyThread_test();
26         Thread t6=new MyThread_test();
27         pool.execute(t1);
28         pool.execute(t2);
29         pool.execute(t3);
30         pool.execute(t4);
31         pool.execute(t5);
32         pool.execute(t6);
33     //    pool.schedule(t5,10,TimeUnit.MILLISECONDS);
34         //pool.schedule(t6,10,TimeUnit.MILLISECONDS);
35         pool.shutdown();
36     }
37 }
38 class MyThread_test extends Thread{
39     public void run(){
40         System.out.println(Thread.currentThread().getName()+"正在执行。。");
41     }
42 }
View Code
1 pool-1-thread-1正在执行。。
2 pool-1-thread-2正在执行。。
3 pool-1-thread-1正在执行。。
4 pool-1-thread-2正在执行。。
5 pool-1-thread-1正在执行。。
6 pool-1-thread-2正在执行。。
View Code

  创建自定义线程池的构造方法很多,本例中的含义如下:

 1 public tThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable>workQueue)
 2 
 3 参数
 4     corePoolSize:池中所保存的线程数,包括空闲线程。
 5     maximumPoolSize:池中允许的最大线程数。
 6     keepAliveTime:当线程大于核心时,此为终止前多余的空前线程等待新任务的最长时间。
 7     unit-keepAliveTime:参数的时间单位
 8     workQueue:执行前用于保持任务队列,此队列仅保持有executor方法提交的Runnable任务。
 9 
10 抛出:
11     IllegalArgumentException:如果corePoolSize或keepAliveTime小于0或者maximumPoolSize小于等于0,或者说corePoolSize大于maximumPoolSize。
12     NullPointerException:如果workQueue为空

  虽然自定义线程池麻烦点,但是可以获取当前线程池的尺寸、正在执行任务的线程数、工作队列等。

六、障碍器

  当计算一个大的任务时,常常需要分配好多子任务去执行,只有当所有子任务执行完时,才能执行主任务,这时候需要借助障碍器。

 1 package Thread;
 2 
 3 import java.util.concurrent.BrokenBarrierException;
 4 import java.util.concurrent.CyclicBarrier;
 5 
 6 public class CarrierTest {
 7     public static void main(String[] args){
 8         CyclicBarrier cb=new CyclicBarrier(6,new MainTask());
 9         new  SubTask("A",cb).start();
10         new  SubTask("B",cb).start();
11         new  SubTask("C",cb).start();
12         new  SubTask("D",cb).start();
13         new  SubTask("E",cb).start();
14         new  SubTask("F",cb).start();
15     }
16 }
17 class MainTask implements Runnable{
18     public void run(){
19         System.out.println(">>>>主任务执行了!<<<<");
20     }
21 }
22 class SubTask extends Thread{
23     private String name;
24     private CyclicBarrier cb;
25     SubTask(String name,CyclicBarrier cb){
26         this.name=name;
27         this.cb=cb;
28     }
29     public void run(){
30         System.out.println("[子任务"+name+"]开始执行了!");
31         //for(int i=0;i<99999;i++);//模拟耗时的任务
32         System.out.println("[子任务"+name+"]开始执行完成了,并通知障碍器已经完成!");
33         
34         try{
35             cb.await();//通知障碍器已经完成
36         }
37         catch(InterruptedException e){
38             e.printStackTrace();
39         }
40         catch(BrokenBarrierException e){
41             e.printStackTrace();
42         }
43     }
44 }
View Code
 1 [子任务C]开始执行了!
 2 [子任务D]开始执行了!
 3 [子任务E]开始执行了!
 4 [子任务B]开始执行了!
 5 [子任务A]开始执行了!
 6 [子任务B]开始执行完成了,并通知障碍器已经完成!
 7 [子任务E]开始执行完成了,并通知障碍器已经完成!
 8 [子任务D]开始执行完成了,并通知障碍器已经完成!
 9 [子任务F]开始执行了!
10 [子任务C]开始执行完成了,并通知障碍器已经完成!
11 [子任务F]开始执行完成了,并通知障碍器已经完成!
12 [子任务A]开始执行完成了,并通知障碍器已经完成!
13 >>>>主任务执行了!<<<<
View Code
posted @ 2015-12-23 12:17  liurio  阅读(668)  评论(0编辑  收藏  举报