[LeetCode] 119. Pascal's Triangle II 杨辉三角 II
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
118. Pascal's Triangle 的拓展,给一个索引k,返回杨辉三角的第k行。
解法:题目要求优化到 O(k) 的空间复杂,那么就不能把每行都记录下来,而只是记录前一行和当前行。
Java:
public class Solution { public List<Integer> getRow(int rowIndex) { List<Integer> res = new ArrayList<>(); int curr[] = new int[rowIndex + 1]; int prev[] = new int[rowIndex + 1]; prev[0] = 1; for(int row = 1; row <= rowIndex; row++) { curr[0] = 1; curr[row] = 1; for(int i = 1; i < row; i++) curr[i] = prev[i] + prev[i - 1]; int[] swap = curr; curr = prev; prev = swap; } for(int i = 0; i <= rowIndex; i++) res.add(prev[i]); return res; } }
Java:
public class Solution { public List<Integer> getRow(int rowIndex) { ArrayList<Integer> row = new ArrayList<Integer>(); for (int i=0; i<rowIndex+1; i++){ row.add(0,1); for(int j=1; j<row.size()-1;j++){ row.set(j, row.get(j)+row.get(j+1)); } } return row; } }
Python:
class Solution: # @return a list of integers def getRow(self, rowIndex): result = [0] * (rowIndex + 1) for i in xrange(rowIndex + 1): old = result[0] = 1 for j in xrange(1, i + 1): old, result[j] = result[j], old + result[j] return result
C++:
class Solution { public: vector<int> getRow(int rowIndex) { vector<int> out; if (rowIndex < 0) return out; out.assign(rowIndex + 1, 0); for (int i = 0; i <= rowIndex; ++i) { if ( i == 0) { out[0] = 1; continue; } for (int j = rowIndex; j >= 1; --j) { out[j] = out[j] + out[j-1]; } } return out; } };
C++:
class Solution { public: vector<int> getRow(int rowIndex) { vector<int> result(rowIndex+1, 0); result[0] = 1; for(int i=1; i<rowIndex+1; i++) for(int j=i; j>=1; j--) result[j] += result[j-1]; return result; } };
类似题目:
[LeetCode] 118. Pascal's Triangle 杨辉三角