[LeetCode] 149. Max Points on a Line 共线点个数
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line.
给一个由n个点组成的2D平面,找出最多的同在一条直线上的点的个数。
共线点的条件是斜率一样,corn case:点相同;x坐标相同。
Java:
public class Solution { public int maxPoints(Point[] points) { int res = 0; for (int i = 0; i < points.length; ++i) { Map<Map<Integer, Integer>, Integer> m = new HashMap<>(); int duplicate = 1; for (int j = i + 1; j < points.length; ++j) { if (points[i].x == points[j].x && points[i].y == points[j].y) { ++duplicate; continue; } int dx = points[j].x - points[i].x; int dy = points[j].y - points[i].y; int d = gcd(dx, dy); Map<Integer, Integer> t = new HashMap<>(); t.put(dx / d, dy / d); m.put(t, m.getOrDefault(t, 0) + 1); } res = Math.max(res, duplicate); for (Map.Entry<Map<Integer, Integer>, Integer> e : m.entrySet()) { res = Math.max(res, e.getValue() + duplicate); } } return res; } public int gcd(int a, int b) { return (b == 0) ? a : gcd(b, a % b); } }
Python:
class Point: def __init__(self, a=0, b=0): self.x = a self.y = b class Solution(object): def maxPoints(self, points): """ :type points: List[Point] :rtype: int """ max_points = 0 for i, start in enumerate(points): slope_count, same = collections.defaultdict(int), 1 for j in xrange(i + 1, len(points)): end = points[j] if start.x == end.x and start.y == end.y: same += 1 else: slope = float("inf") if start.x - end.x != 0: slope = (start.y - end.y) * 1.0 / (start.x - end.x) slope_count[slope] += 1 current_max = same for slope in slope_count: current_max = max(current_max, slope_count[slope] + same) max_points = max(max_points, current_max) return max_points
C++:
class Solution { public: int maxPoints(vector<Point>& points) { int res = 0; for (int i = 0; i < points.size(); ++i) { map<pair<int, int>, int> m; int duplicate = 1; for (int j = i + 1; j < points.size(); ++j) { if (points[i].x == points[j].x && points[i].y == points[j].y) { ++duplicate; continue; } int dx = points[j].x - points[i].x; int dy = points[j].y - points[i].y; int d = gcd(dx, dy); ++m[{dx / d, dy / d}]; } res = max(res, duplicate); for (auto it = m.begin(); it != m.end(); ++it) { res = max(res, it->second + duplicate); } } return res; } int gcd(int a, int b) { return (b == 0) ? a : gcd(b, a % b); } };