[LeetCode] 96. Unique Binary Search Trees 唯一二叉搜索树
Given n, how many structurally unique BST's (binary search trees) that store values 1...n?
For example,
Given n = 3, there are a total of 5 unique BST's.
1 3 3 2 1 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
此题是卡塔兰数的一个应用。注意是BST而不是普通的Binary Tree,所以要满足左比根小,右比根大。
1 n = 1 2 1 n = 2 / \ 1 2 1 3 3 2 1 n = 3 \ / / / \ \ 3 2 1 1 3 2 / / \ \ 2 1 2 3
定义f(n)为unique BST的数量,以n = 3为例:
构造的BST的根节点可以取{1, 2, 3}中的任一数字。
如以1为节点,则left subtree只能有0个节点,而right subtree有2, 3两个节点。所以left/right subtree一共的combination数量为:f(0) * f(2) = 2
以2为节点,则left subtree只能为1,right subtree只能为3:f(1) * f(1) = 1
以3为节点,则left subtree有1, 2两个节点,right subtree有0个节点:f(2)*f(0) = 2
总结规律:
f(0) = 1
f(n) = f(0)*f(n-1) + f(1)*f(n-2) + ... + f(n-2)*f(1) + f(n-1)*f(0)
Java: DP
class Solution { public int numTrees(int n) { int[] count = new int[n + 1]; count[0] = 1; count[1] = 1; for (int i = 2; i <= n; i++) { for (int j = 0; j <= i - 1; j++) { count[i] = count[i] + count[j] * count[i - j - 1]; } } return count[n]; } }
Python: Math
class Solution(object): def numTrees(self, n): if n == 0: return 1 def combination(n, k): count = 1 # C(n, k) = (n) / 1 * (n - 1) / 2 ... * (n - k + 1) / k for i in xrange(1, k + 1): count = count * (n - i + 1) / i; return count return combination(2 * n, n) - combination(2 * n, n - 1)
Python: DP
class Solution2: def numTrees(self, n): counts = [1, 1] for i in xrange(2, n + 1): count = 0 for j in xrange(i): count += counts[j] * counts[i - j - 1] counts.append(count) return counts[-1]
C++:
class Solution { public: int numTrees(int n) { vector<int> dp(n + 1, 0); dp[0] = 1; dp[1] = 1; for (int i = 2; i <= n; ++i) { for (int j = 0; j < i; ++j) { dp[i] += dp[j] * dp[i - j - 1]; } } return dp[n]; } };
类似题目:
[LeetCode] 96. Unique Binary Search Trees II 唯一二叉搜索树 II
All LeetCode Questions List 题目汇总