[LeetCode] 207. Course Schedule 课程安排
There are a total of n courses you have to take, labeled from 0
to n - 1
.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
- This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
- There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
- Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
- Topological sort could also be done via BFS.
给定n个课程,上课的顺序有先后要求,用pair表示,判断是否能完成所有课程。
对于每一对课程的顺序关系,把它看做是一个有向边,边是由两个端点组成的,用两个点来表示边,所有的课程关系即构成一个有向图,问题相当于判断有向图中是否有环。判断有向图是否有环的方法是拓扑排序。
拓扑排序:维护一张表记录所有点的入度,移出入度为0的点并更新其他点的入度,重复此过程直到没有点的入度为0。如果原有向图有环的话,此时会有剩余的点且其入度不为0;否则没有剩余的点。
图的拓扑排序可以DFS或者BFS。遍历所有边,计算点的入度;将入度为0的点移出点集,并更新剩余点的入度;重复步骤2,直至没有剩余点或剩余点的入度均大于0。
这里不能使用邻接矩阵,应该使用邻接表来存储有向图的信息。邻接表可以使用结构体来实现,每个结构体存储一个值以及一个指向下一个节点的指针,同时维护一个存储多个头结点的数组即可。除此之外,在数据结构简单的情况下,还可以使用数组来模拟简单的邻接表。
Java:BFS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | public class Solution { public boolean canFinish( int numCourses, int [][] prerequisites) { int [] pre = new int [numCourses]; List<Integer>[] satisfies = new List[numCourses]; for ( int i= 0 ; i<numCourses; i++) satisfies[i] = new ArrayList<>(); for ( int i= 0 ; i<prerequisites.length; i++) { satisfies[prerequisites[i][ 1 ]].add(prerequisites[i][ 0 ]); pre[prerequisites[i][ 0 ]] ++; } int finish = 0 ; LinkedList<Integer> queue = new LinkedList<>(); for ( int i= 0 ; i<numCourses; i++) { if (pre[i] == 0 ) queue.add(i); } while (!queue.isEmpty()) { int course = queue.remove(); finish ++; if (satisfies[course] == null ) continue ; for ( int c: satisfies[course]) { pre[c] --; if (pre[c] == 0 ) queue.add(c); } } return finish == numCourses; } } |
Java:DFS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | public class Solution { private boolean [] canFinish; private boolean [] visited; private List<Integer>[] depends; private boolean canFinish( int course) { if (visited[course]) return canFinish[course]; visited[course] = true ; for ( int c: depends[course]) { if (!canFinish(c)) return false ; } canFinish[course] = true ; return canFinish[course]; } public boolean canFinish( int numCourses, int [][] prerequisites) { canFinish = new boolean [numCourses]; visited = new boolean [numCourses]; depends = new List[numCourses]; for ( int i= 0 ; i<numCourses; i++) depends[i] = new ArrayList<Integer>(); for ( int i= 0 ; i<prerequisites.length; i++) { depends[prerequisites[i][ 0 ]].add(prerequisites[i][ 1 ]); } for ( int i= 0 ; i<numCourses; i++) { if (!canFinish(i)) return false ; } return true ; } } |
Python:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | import collections class Solution( object ): def canFinish( self , numCourses, prerequisites): """ :type numCourses: int :type prerequisites: List[List[int]] :rtype: bool """ zero_in_degree_queue, in_degree, out_degree = collections.deque(), {}, {} for i, j in prerequisites: if i not in in_degree: in_degree[i] = set () if j not in out_degree: out_degree[j] = set () in_degree[i].add(j) out_degree[j].add(i) for i in xrange (numCourses): if i not in in_degree: zero_in_degree_queue.append(i) while zero_in_degree_queue: prerequisite = zero_in_degree_queue.popleft() if prerequisite in out_degree: for course in out_degree[prerequisite]: in_degree[course].discard(prerequisite) if not in_degree[course]: zero_in_degree_queue.append(course) del out_degree[prerequisite] if out_degree: return False return True |
C++: BFS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | class Solution { public : bool canFinish( int numCourses, vector<vector< int >>& prerequisites) { vector<vector< int > > graph(numCourses, vector< int >(0)); vector< int > in(numCourses, 0); for ( auto a : prerequisites) { graph[a[1]].push_back(a[0]); ++in[a[0]]; } queue< int > q; for ( int i = 0; i < numCourses; ++i) { if (in[i] == 0) q.push(i); } while (!q.empty()) { int t = q.front(); q.pop(); for ( auto a : graph[t]) { --in[a]; if (in[a] == 0) q.push(a); } } for ( int i = 0; i < numCourses; ++i) { if (in[i] != 0) return false ; } return true ; } }; |
C++: DFS
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | class Solution { public : bool canFinish( int numCourses, vector<vector< int > >& prerequisites) { vector<vector< int > > graph(numCourses, vector< int >(0)); vector< int > visit(numCourses, 0); for ( auto a : prerequisites) { graph[a[1]].push_back(a[0]); } for ( int i = 0; i < numCourses; ++i) { if (!canFinishDFS(graph, visit, i)) return false ; } return true ; } bool canFinishDFS(vector<vector< int > > &graph, vector< int > &visit, int i) { if (visit[i] == -1) return false ; if (visit[i] == 1) return true ; visit[i] = -1; for ( auto a : graph[i]) { if (!canFinishDFS(graph, visit, a)) return false ; } visit[i] = 1; return true ; } }; |
类似题目:
[LeetCode] 210. Course Schedule II 课程安排II
All LeetCode Questions List 题目汇总
【推荐】还在用 ECharts 开发大屏?试试这款永久免费的开源 BI 工具!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· dotnet 源代码生成器分析器入门
· ThreeJs-16智慧城市项目(重磅以及未来发展ai)
· .NET 原生驾驭 AI 新基建实战系列(一):向量数据库的应用与畅想
· Browser-use 详细介绍&使用文档
· 软件产品开发中常见的10个问题及处理方法
· Vite CVE-2025-30208 安全漏洞