[LeetCode] 727. Minimum Window Subsequence 最小窗口子序列
Given strings S
and T
, find the minimum (contiguous) substring W
of S
, so that T
is a subsequenceof W
.
If there is no such window in S
that covers all characters in T
, return the empty string ""
. If there are multiple such minimum-length windows, return the one with the left-most starting index.
Example 1:
Input: S = "abcdebdde", T = "bde" Output: "bcde" Explanation: "bcde" is the answer because it occurs before "bdde" which has the same length. "deb" is not a smaller window because the elements of T in the window must occur in order.
Note:
- All the strings in the input will only contain lowercase letters.
- The length of
S
will be in the range[1, 20000]
. - The length of
T
will be in the range[1, 100]
.
给定字符串S和T,在S中寻找最小连续子串W,使得T是W的子序列。如果没有找到返回"",如果找到多个最小长度的子串,返回左 index 最小的。
解法1:暴力搜索brute force,对于每一个s[i],从s[0]到s[i]扫描,看是否按顺序满足目标字符。 显然要超时,不是题目要求的。
解法2: 动态规划DP, 二维数组dp[i][j]表示T[0...i]在S中找到的起始下标index,使得S[index, j]满足目前T[0...i]。首先找到能满足满足T中第一个字符T[0]的S中的字符下标存入dp[0][j],也就是满足第一个字符要求一定是从这些找到的字符开始的。然后在开始找第二个字符T[1],扫到的字符dp[j]存有index,说明可以从这里记录的index开始,找到等于T[1]的S[j]就把之前那个index存进来,说明从这个index到j满足T[0..1],一直循环,直到T中的i个字符找完。如果此时dp[i][j]中有index,说明S[index, j]满足条件,如有多个输出最先找到的。
State: dp[i][j],表示在S中找到的起始下标 index ,使得 S[index...j] 满足目前 T[0...i] 是其子序列。
function: dp[i+1][k] = dp[i][j] if S[k] = T[i+1] , 如果查看到第i+1行(也就是第 T[i+1] 的字符),如果满足S[k] = T[i+1],就把上一行找到的index赋给它。
Initialize: dp[0][j] = j if S[j] = T[0] , 二维数组的第一行,如果字符S[j] = T[0], 就把S[j]的index(就是j)付给它。其他元素均为 None 或者 -1。
Return: dp[len(T) - 1][j], if dp[len(T) - 1][j] != None, 返回最小的。如果没有返回 ""
由于我们只用到前一行的值,所以可以只用2行的二维数组,每一个循环更新其中的一行。可以用 j % 2 来往复使用。
Java:
class Solution { public String minWindow(String S, String T) { int m = T.length(), n = S.length(); int[][] dp = new int[m + 1][n + 1]; for (int j = 0; j <= n; j++) { dp[0][j] = j + 1; } for (int i = 1; i <= m; i++) { for (int j = 1; j <= n; j++) { if (T.charAt(i - 1) == S.charAt(j - 1)) { dp[i][j] = dp[i - 1][j - 1]; } else { dp[i][j] = dp[i][j - 1]; } } } int start = 0, len = n + 1; for (int j = 1; j <= n; j++) { if (dp[m][j] != 0) { if (j - dp[m][j] + 1 < len) { start = dp[m][j] - 1; len = j - dp[m][j] + 1; } } } return len == n + 1 ? "" : S.substring(start, start + len); } }
Java: brute force, Time O(s*t), Space O(s*t)
class Solution { public String minWindow(String S, String T) { int min = -1, idx = -1; char[] Tc = T.toCharArray(); char[] Sc = S.toCharArray(); for(int i = 0;i < S.length();i++){ if(Sc[i] != Tc[0]) continue; int len = check(Tc,Sc,i); if(len <= 0) break; if(min == -1 || len < min){ idx = i; min = len; } } if(min == -1) return ""; return S.substring(idx, idx + min); } public int check(char[] Tc, char[] Sc, int start){ int i = start, j = 0; while(i < Sc.length && j < Tc.length){ if(Sc[i] == Tc[j]) j++; i++; } if(j == Tc.length) return i - start; return -1; } }
Java: DP, Time O(s*t), Space O(s*2)
class Solution { public String minWindow(String S, String T) { int[][] dp = new int[2][S.length()]; for (int i = 0; i < S.length(); ++i) dp[0][i] = S.charAt(i) == T.charAt(0) ? i : -1; for (int j = 1; j < T.length(); ++j) { int last = -1; Arrays.fill(dp[j & 1], -1); for (int i = 0; i < S.length(); ++i) { if (last >= 0 && S.charAt(i) == T.charAt(j)) dp[j & 1][i] = last; if (dp[j & 1][i] >= 0) last = dp[j & 1][i]; } } int start = 0, end = S.length(); for (int e = 0; e < S.length(); ++e) { int s = dp[T.length() & 1][e]; if (s >= 0 && e - s < end - start) { start = s; end = e; } } return end < S.length() ? S.substring(start, end+1) : ""; } }
Java: Time O(s*t), Space O(s*t)
class Solution { public String minWindow(String S, String T) { int[][] dp = new int[T.length()][S.length()]; for(int i = 0; i < T.length(); i++) { for(int j = 0; j < S.length(); j++) { dp[i][j] = -1; } } for(int j = 0; j < S.length(); j++) { dp[0][j] = (S.charAt(j) == T.charAt(0)) ? j : -1; } for(int i = 1; i < T.length(); i++) { int last = -1; for(int j = 0; j < S.length(); j++) { if(last >= 0 && S.charAt(j) == T.charAt(i)) { dp[i][j] = last; } if(dp[i - 1][j] >= 0) { last = dp[i - 1][j]; } } } int start = -1; int length = Integer.MAX_VALUE; for(int j = 0; j < S.length(); j++) { if(dp[T.length() - 1][j] >= 0 && (j - dp[T.length() - 1][j] + 1 < length)) { start = dp[T.length() - 1][j]; length = j - dp[T.length() - 1][j] + 1; } } return (start == -1) ? "" : S.substring(start, start + length); } }
Python: Time O(s*t), Space O(s*2)
class Solution(object): def minWindow(self, S, T): dp = [[None for _ in xrange(len(S))] for _ in xrange(2)] for j, c in enumerate(S): if c == T[0]: dp[0][j] = j for i in xrange(1, len(T)): prev = None dp[i%2] = [None] * len(S) for j, c in enumerate(S): if prev is not None and c == T[i]: dp[i%2][j] = prev if dp[(i-1)%2][j] is not None: prev = dp[(i-1)%2][j] start, end = 0, len(S) for j, i in enumerate(dp[(len(T)-1)%2]): if i >= 0 and j-i < end-start: start, end = i, j return S[start:end+1] if end < len(S) else ""
Python:
class Solution(object): def minWindow(self, S, T): """ :type S: str :type T: str :rtype: str """ ans = '' ls, lt = len(S), len(T) dp = [-1] * lt for x in range(ls): for y in range(lt - 1, -1, -1): if T[y] == S[x]: dp[y] = dp[y - 1] if y else x if y == lt - 1 and dp[-1] > -1: nlen = x - dp[-1] + 1 if not ans or nlen < len(ans): ans = S[dp[-1] : x+1] return ans
C++:
/* * At time j, for each position e in S (e for end), let's remember * the largest index cur[e] = s (for start) so that S[s: e+1] has * T[:j+1] as a subsequence, and -1 otherwise if it isn't possible. */ class Solution { public: string minWindow(string S, string T) { int sn = S.size(), tn = T.size(); vector<int> memo(sn, -1); for (int i = 0; i < sn; ++i) { if (T[0] == S[i]) { memo[i] = i; } } for (int j = 1; j < tn; ++j) { vector<int> swap(sn, -1); int currStart = -1; for (int i = 0; i < sn; ++i) { if (S[i] == T[j] && currStart >= 0) { // T[:j+1] found swap[i] = currStart; } if (memo[i] >= 0) { currStart = memo[i]; } } std::swap(memo, swap); } int BAR = sn + 1, minLen = BAR; int start = 0; for (int e = 0; e < sn; ++e){ if (memo[e] >= 0) { int currLen = e + 1 - memo[e]; if (currLen < minLen) { start = memo[e]; minLen = currLen; } } } return minLen == BAR ? "" : S.substr(start, minLen); } };
C++:
class Solution { public: string minWindow(string s, string t) { int ns = s.size(), nt= t.size(); int dp[ns+1][nt+1] = {}; const int mxx = ns + 1; //for(int i=0;i<=ns;i++) dp[i][0]=i; for (int i = 0 ; i <= ns; ++i) { for (int j = 1; j <= nt; ++j) { dp[i][j] = mxx; if (i) { dp[i][j] = min(dp[i][j], 1 + dp[i-1][j]); if (s[i-1] == t[j-1]) dp[i][j] = min(dp[i][j], 1 + dp[i-1][j-1]); } } } int ans = ns + 1, x = -1; for (int i = 0; i <=ns; ++i) if (dp[i][nt] < ans) { x = i; ans = dp[i][nt]; } if (x < 0) return ""; return s.substr(x-ans,ans); } };
类似题目:
[LeetCode] 3.Longest Substring Without Repeating Characters 最长无重复子串
[LeetCode] 76. Minimum Window Substring 最小窗口子串
All LeetCode Questions List 题目汇总