[LeetCode] 441. Arranging Coins 排列硬币
You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.
Given n, find the total number of full staircase rows that can be formed.
n is a non-negative integer and fits within the range of a 32-bit signed integer.
Example 1:
n = 5 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ Because the 3rd row is incomplete, we return 2.
Example 2:
n = 8 The coins can form the following rows: ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ Because the 4th row is incomplete, we return 3.
思路:
解法1:设一个变量 cur表示当前行需要的硬币数, 初始值为1,从n中减去cur,cur自加1,如果此时剩余的硬币小于cur,返回cur-1即可
解法2:二分搜索法Binary Search,等差数列前m项和: m * (m + 1) / 2, 搜索前i行之和刚好大于n的临界点,这样我们减一个就是能排满的行数
解法3:利用等差数列的公式n = (1 + x) * x / 2, 则x = (-1 + sqrt(8 * n + 1)) / 2, 取整后就是能填满的行数
C++: Time: O(n), Space: O(1)
class Solution { public: int arrangeCoins(int n) { int cur = 1, rem = n - 1; while (rem >= cur + 1) { ++cur; rem -= cur; } return n == 0 ? 0 : cur; } };
C++: Time: O(logn), Space: O(1)
class Solution { public: int arrangeCoins(int n) { if (n <= 1) return n; long low = 1, high = n; while (low < high) { long mid = low + (high - low) / 2; if (mid * (mid + 1) / 2 <= n) low = mid + 1; else high = mid; } return low - 1; } };
C++: Time: O(logn), Space: O(1)
class Solution { public: int arrangeCoins(int n) { return (int)((-1 + sqrt(1 + 8 * (long)n)) / 2); # sqrt is O(logn) time.
} };
Python: O(n), Space: O(1)
class Solution(object): def arrangeCoins(self, n): cur = 1 rem = n while rem >= cur: rem -= cur cur += 1 return 0 if n == 0 else cur - 1
Python: O(logn), Space: O(1)
class Solution(object): def arrangeCoins(self, n): """ :type n: int :rtype: int """ left, right = 1, n while left <= right: mid = left + (right - left) / 2 if 2 * n < mid * (mid+1): right = mid - 1 else: left = mid + 1 return left - 1
Python: O(logn), Space: O(1)
class Solution(object): def arrangeCoins(self, n): """ :type n: int :rtype: int """ l, r = 0, n while l <= r: mid = (l + r) / 2 if mid * (mid + 1) / 2 > n: r = mid - 1 else: l = mid + 1 return r
Python: O(logn), Space: O(1)
class Solution(object): def arrangeCoins(self, n): """ :type n: int :rtype: int """ return int((math.sqrt(8*n+1)-1) / 2) # sqrt is O(logn) time.