山东济南彤昌机械科技有限公司 山东济南江鹏工贸游有限公司

bzoj 1492 [NOI2007]货币兑换Cash(斜率dp+cdq分治)

 

【题目链接】

 

  http://www.lydsy.com/JudgeOnline/problem.php?id=1492

 

 

【题意】

 

  有AB两种货币,每天可以可以付IPi元,买到A券和B券,且A:B=Ratei,也可以卖掉OPi%的A券和B券,每天AB价值为Ai和Bi。

  开始有S元,n天后手中不能有AB券,问最大获益。

  

【思路】

 

  设f[i]表示前i天的最大收益。

  第j天将手中的钱全部换掉,可以换成的B券数目Y(j):f[j]*(1/(Rate[j]*A[j]+B[j]))

  第j天将手中的钱全部换掉,可以换成的A券数目X(j):f[j]*(Rate[j]/(Rate[j]*A[j]+B[j]))

  第i天将第j天的AB券全部卖掉:A[i]*X(j)+B[i]*Y(j)

  则 f[i]=max{ f[i-1],A[i]*X(j)+B[i]*Y(j) }

  则我们需要求 max p=A[i]*X(j)+B[i]*Y(j)

  即我们要最大化直线方程Y(j)=-A[i]/B[i]*X(j)+p/B[j]的截距

  设X(j)<X(k),当k比j更优时需要满足slop(j,k)>-A[i]/B[i]

  注意不能用单调队列维护因为x和斜率不是单调的。

  我们需要维护一个上凸壳,可以使用splay(我不会=_=

  考虑CDQ分治:

  把每天看作一个点。将点按照-a/b升序排列。

  定义sovle(l,r)为解决l,r内的所有询问,且保证solve结束后点按照x,y升序排列。

  1.按照点的查询顺序分成[l,mid]与[mid+1,r]

  2.递归处理左区间

  3.此时左区间已经按照x,y排好序,扫一遍求出左区间的下凸线

  4.计算左区间对右区间的影响。此时右区间按照-a/b升序排列,扫一遍更新右区间答案。

  5.递归处理右区间

  6.将区间按照x,y升序排列

 

【资源链接】

 

  cdq论文->click here

 

【代码】

 1 #include<cmath>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6 
 7 const int N = 1e5+10;
 8 const double inf = 1e20;
 9 const double eps = 1e-8;
10 
11 struct Pt {
12     double x,y,a,b,k,r;
13     int id;
14     bool operator < (const Pt& rhs) const {
15         return k>rhs.k;
16     }
17 }p[N],t[N];
18 
19 double f[N];
20 int n,top,st[N];
21 
22 double slop(int a,int b)
23 {
24     if(!b) return -inf;
25     if(fabs(p[a].x-p[b].x)<eps) return inf;
26     return (p[b].y-p[a].y)/(p[b].x-p[a].x);
27 }
28 void solve(int l,int r)
29 {
30     if(l==r) {
31         f[l]=max(f[l],f[l-1]);
32         p[l].y=f[l]/(p[l].a*p[l].r+p[l].b);
33         p[l].x=p[l].y*p[l].r;
34         return ;
35     }
36     int mid=(l+r)>>1,j=1,l1=l,l2=mid+1;
37     for(int i=l;i<=r;i++) {
38         if(p[i].id<=mid) t[l1++]=p[i];
39         else t[l2++]=p[i];
40     }
41     for(int i=l;i<=r;i++) p[i]=t[i];
42     solve(l,mid);
43     top=0;
44     for(int i=l;i<=mid;i++) {
45         while(top>1&&slop(st[top-1],st[top])<slop(st[top-1],i)+eps) top--;
46         st[++top]=i;
47     }
48     st[++top]=0;
49     for(int i=mid+1;i<=r;i++) {
50         while(j<top&&slop(st[j],st[j+1])+eps>p[i].k) j++;
51         f[p[i].id]=max(f[p[i].id],p[st[j]].x*p[i].a+p[st[j]].y*p[i].b);
52     }
53     solve(mid+1,r);
54     l1=l,l2=mid+1;
55     for(int i=l;i<=r;i++) {
56         if(((p[l1].x<p[l2].x||(fabs(p[l1].x-p[l2].x)<eps&&p[l1].y<p[l2].y))||l2>r)&&l1<=mid)
57             t[i]=p[l1++];
58         else t[i]=p[l2++];
59     }
60     for(int i=l;i<=r;i++) p[i]=t[i];
61 }
62 
63 int main()
64 {
65     scanf("%d%lf",&n,&f[0]);
66     for(int i=1;i<=n;i++) {
67         scanf("%lf%lf%lf",&p[i].a,&p[i].b,&p[i].r);
68         p[i].k=-p[i].a/p[i].b; p[i].id=i;
69     }
70     sort(p+1,p+n+1);
71     solve(1,n);
72     printf("%.3lf",f[n]);
73     return 0;
74 }

 

posted on 2016-03-03 21:49  hahalidaxin  阅读(1408)  评论(1编辑  收藏  举报