【二分查找法(折半查找法)】
/*
二分查找法 说明: 如果搜寻的数列已经有排序,应该尽量利用它们已排序的特性,以减少搜寻比对的次数 ,这是搜寻的基本原则,二分搜寻法是这个基本原则的代表。 解法: 在二分搜寻法中,从数列的中间开始搜寻,如果这个数小于我们所搜寻的数,由于数列已排序,则该数左边的数一定都小于要搜寻 的对象,所以无需浪费时间在左边的数;如果搜寻的数大于所搜寻的对象,则右边的数无需再搜寻,直接搜寻左边的数。 所以在二分搜寻法中,将数列不断的分为两个部份,每次从分割的部份中取中间数比对,例如要搜寻92于以下的数列,首先中间数 索引为(0+9)/2 = 4(索引由0 开始): [3 24 57 57 67 68 83 90 92 95] 由于67小于92,所以转搜寻右边的数列: 3 24 57 57 67 [68 83 90 92 95] 由于90小于92,再搜寻右边的数列,这次就找到所要的数了: 3 24 57 57 67 68 83 90 [92 95] */ #include <stdio.h> #include <stdlib.h> #include <time.h> #define MAX 10 #define SWAP(x,y) {int t; t = x; x = y; y = t;} void quicksort(int[], int, int); int bisearch(int[], int); int main(void) { int number[MAX] = {0}; int i, find; srand(time(NULL)); for(i = 0; i < MAX; i++) { number[i] = rand() % 100; } quicksort(number, 0, MAX-1); printf("数列:"); for(i = 0; i < MAX; i++) printf("%d ", number[i]); printf("\n输入寻找对象:"); scanf("%d", &find); if((i = bisearch(number, find)) >= 0) printf("找到数字于索引 %d ", i); else printf("\n找不到指定数"); printf("\n"); return 0; } int bisearch(int number[], int find) { int low, mid, upper; low = 0; upper = MAX - 1; while(low <= upper) { mid = (low+upper) / 2; if(number[mid] < find) low = mid+1; else if(number[mid] > find) upper = mid - 1; else return mid; } return -1; } void quicksort(int number[], int left, int right) { int i, j, k, s; if(left < right) { s = number[(left+right)/2]; i = left - 1; j = right + 1; while(1) { while(number[++i] < s) ; // 向右找 while(number[--j] > s) ; // 向左找 if(i >= j) break; SWAP(number[i], number[j]); } quicksort(number, left, i-1);// 对左边进行递回 quicksort(number, j+1, right); // 对右边进行递回 } }
运行结果:
转载本博请联系作者! 如有问题请在评论区评论或者发邮件:@libras