ACM HDU 1081 To The Max
To The Max
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10839 Accepted Submission(s): 5191
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle
is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is
followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may
be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
题目大意:给一个N*N的矩阵求解最大的子矩阵和
解法:压缩数组+暴力(水过)
源代码:
<span style="font-size:18px;">#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string> #include<string.h> #include<math.h> #include<map> #include<vector> #include<algorithm> #include<queue> using namespace std; #define MAX 0x3f3f3f3f #define MIN -0x3f3f3f3f #define PI 3.14159265358979323 #define N 105 int n; int ans[N][N]; int value(int x, int y) { int sum; int i, j; sum = 0; for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { if (i >= x&&j >= y) sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]); if (i >= y&&j >= x) sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]); } } return sum; } int main() { int i, j; int result; int num; int temp; while (scanf("%d", &n) != EOF) { memset(ans, 0, sizeof(ans)); for (i = 1; i <= n; i++) { for (j = 1; j <= n; j++) { scanf("%d", &num); ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num; } } result = 0; for (i = 1; i <= n; i++) { for (j = i; j <= n; j++) { temp = value(i, j); if (temp > result) result = temp; } } printf("%d\n", result); } return 0; }</span>