机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法
对于样本数据的散点图形如函数y=ax2+bx+c的图像的数据, 在python中的拟合过程为:
##最小二乘法 import numpy as np import scipy as sp import matplotlib.pyplot as plt from scipy.optimize import leastsq ''' 设置样本数据,真实数据需要在这里处理 ''' ##样本数据(Xi,Yi),需要转换成数组(列表)形式 Xi=np.array([1,2,3,4,5,6]) #Yi=np.array([9,18,31,48,69,94]) Yi=np.array([9.1,18.3,32,47,69.5,94.8]) ''' 设定拟合函数和偏差函数 函数的形状确定过程: 1.先画样本图像 2.根据样本图像大致形状确定函数形式(直线、抛物线、正弦余弦等) ''' ##需要拟合的函数func :指定函数的形状 def func(p,x): a,b,c=p return a*x*x+b*x+c ##偏差函数:x,y都是列表:这里的x,y更上面的Xi,Yi中是一一对应的 def error(p,x,y): return func(p,x)-y ''' 主要部分:附带部分说明 1.leastsq函数的返回值tuple,第一个元素是求解结果,第二个是求解的代价值(个人理解) 2.官网的原话(第二个值):Value of the cost function at the solution 3.实例:Para=>(array([ 0.61349535, 1.79409255]), 3) 4.返回值元组中第一个值的数量跟需要求解的参数的数量一致 ''' #k,b的初始值,可以任意设定,经过几次试验,发现p0的值会影响cost的值:Para[1] p0=[10,10,10] #把error函数中除了p0以外的参数打包到args中(使用要求) Para=leastsq(error,p0,args=(Xi,Yi)) #读取结果 a,b,c=Para[0] print("a=",a,"b=",b,"c=",c) print("cost:"+str(Para[1])) print("求解的拟合直线为:") print("y="+str(round(a,2))+"x*x+"+str(round(b,2))+"x+"+str(c)) ''' 绘图,看拟合效果. matplotlib默认不支持中文,label设置中文的话需要另行设置 如果报错,改成英文就可以 ''' #画样本点 plt.figure(figsize=(8,6)) ##指定图像比例: 8:6 plt.scatter(Xi,Yi,color="green",label="样本数据",linewidth=2) #画拟合直线 x=np.linspace(0,12,100) ##在0-15直接画100个连续点 y=a*x*x+b*x+c ##函数式 plt.plot(x,y,color="red",label="拟合直线",linewidth=2) plt.legend() #绘制图例 plt.show()
运行结果:
a= 2.06607141425 b= 2.5975001036 c= 4.68999985496 cost:1 求解的拟合直线为: y=2.07x*x+2.6x+4.68999985496
在R中的拟合过程:(在控制台直接敲入或者放入脚本都可以)
###设置函数形式
func<-function(a,b,c){
a*x*x+b*x+c
}
###设置样本数据
x<-c(1,2,3,4,5,6)
y<-c(9.1,18.3,32,47,69.5,94.8)
###把样本数据转换为符合nls函数需要的格式
d<-data.frame(y,x)
###执行求解过程:如果x,y值完全一一对应,汇报错误(循环次数超过了50这个最大值)
nlmod<-nls(y ~ func(a1,b1,c1),data=d,start=list(a1=1,b1=1,c1=1),trace=F)
###分析结果
summary(nlmod)
运行结果: