SGU 226.Colored graph(最短路)
时间限制:0.25s
空间限制:4M
题意:
给出一个n个节点,m条边的图,每条边都有标记了编号为1,2,3三种颜色之一,现在求从1号节点到n号节点的一条最短路径的长度,要求该路径中相邻的边没有相同的颜色。
Solution:
有限制条件的SPFA,要注意有时要走环来改变路径颜色,才能到达目标点。
参考代码
#include <iostream> #include <cstring> #include <cstdio> #include <queue> #define INF 300 using namespace std; struct node { int v, ne, c; } edge[INF * INF]; queue<int> ql; int head[INF], pd[INF]; int dis[INF][4], cnt,n,m; void added (int u, int v, int c) { edge[++cnt].v = v, edge[cnt].c = c; edge[cnt].ne = head[u]; head[u] = cnt; } void spfa() { while (!ql.empty() ) { int x = ql.front(); pd[x] = 0,ql.pop(); for (int i = head[x]; i != 0; i = edge[i].ne) { int j = edge[i].v, color = edge[i].c; for (int k = 1; k <= 3; k++) { if (k == color || dis[x][k] == -1) continue; if (dis[j][color] == -1 || dis[j][color] > dis[x][k] + 1) { dis[j][color] = dis[x][k] + 1; if (!pd[j]) pd[j] = 1, ql.push (j); } } } } } int main() { int x, y, c; scanf ("%d %d", &n, &m); memset (dis, -1, sizeof dis); for (int i = 1; i <= m; i++) { scanf ("%d%d%d", &x, &y, &c); added (x, y, c); } ql.push (1); pd[1] = 1; dis[1][1] = dis[1][2] = dis[1][3] = 0; spfa(); int ans = INF<<12; for (int i = 1; i <= 3; i++) if (dis[n][i] != -1) ans = min (ans, dis[n][i]); if (ans != INF<<12) printf ("%d", ans); else puts ("-1"); return 0; }