springboot mybatis redis 二级缓存

前言

什么是mybatis二级缓存?

二级缓存是多个sqlsession共享的,其作用域是mapper的同一个namespace。

即,在不同的sqlsession中,相同的namespace下,相同的sql语句,并且sql模板中参数也相同的,会命中缓存。

第一次执行完毕会将数据库中查询的数据写到缓存,第二次会从缓存中获取数据将不再从数据库查询,从而提高查询效率。

Mybatis默认没有开启二级缓存,需要在全局配置(mybatis-config.xml)中开启二级缓存。

 

本文讲述的是使用Redis作为缓存,与springboot、mybatis进行集成的方法。

 

1、pom依赖

使用springboot redis集成包,方便redis的访问。redis客户端选用Jedis。

另外读写kv缓存会进行序列化,所以引入了一个序列化包。

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-redis</artifactId>
        </dependency>
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>2.8.0</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.19</version>
        </dependency>

 

依赖搞定之后,下一步先调通Redis客户端。

 

2、Redis访问使用的Bean

增加Configuration,配置jedisConnectionFactory bean,留待后面使用。

一般来讲,也会生成了redisTemplate bean,但是在接下来的场景没有使用到。

@Configuration
public class RedisConfig {

    @Value("${spring.redis.host}")
    private String host;
    // 篇幅受限,省略了

    @Bean
    public JedisPoolConfig getRedisConfig(){
        JedisPoolConfig config = new JedisPoolConfig();
        config.setMaxIdle(maxIdle);
        config.setMaxTotal(maxTotal);
        config.setMaxWaitMillis(maxWaitMillis);
        config.setMinIdle(minIdle);
        return config;
    }

    @Bean(name = "jedisConnectionFactory")
    public JedisConnectionFactory getConnectionFactory(){
        JedisConnectionFactory factory = new JedisConnectionFactory();
        JedisPoolConfig config = getRedisConfig();
        factory.setPoolConfig(config);
        factory.setHostName(host);
        factory.setPort(port);
        factory.setDatabase(database);
        factory.setPassword(password);
        factory.setTimeout(timeout);
        return factory;
    }

    @Bean(name = "redisTemplate")
    public RedisTemplate<?, ?> getRedisTemplate(){
        RedisTemplate<?,?> template = new StringRedisTemplate(getConnectionFactory());
        return template;
    }
} 

这里使用@Value读入了redis相关配置,有更简单的配置读取方式(@ConfigurationProperties(prefix=...)),可以尝试使用。

Redis相关配置如下

#redis
spring.redis.host=10.93.84.53
spring.redis.port=6379
spring.redis.password=bigdata123
spring.redis.database=15
spring.redis.timeout=0

spring.redis.pool.maxTotal=8
spring.redis.pool.maxWaitMillis=1000
spring.redis.pool.maxIdle=8
spring.redis.pool.minIdle=0

Redis客户端的配置含义,这里不再讲解了。pool相关的一般都和性能有关,需要根据并发量权衡句柄、内存等资源进行设置。

 

Redis客户端设置好了,我们开始配置Redis作为Mybatis的缓存。

 

3、Mybatis Cache

这一步是最为关键的一步。实现方式是实现Mybatis的一个接口org.apache.ibatis.cache.Cache。

这个接口设计了写缓存,读缓存,销毁缓存的方式,和访问控制读写锁。

我们实现实现Cache接口的类是MybatisRedisCache。

MybatisRedisCache.java

public class MybatisRedisCache implements Cache {

    private static JedisConnectionFactory jedisConnectionFactory;

    private final String id;

    private final ReadWriteLock readWriteLock = new ReentrantReadWriteLock();

    public MybatisRedisCache(final String id) {
        if (id == null) {
            throw new IllegalArgumentException("Cache instances require an ID");
        }
        this.id = id;
    }

    @Override
    public void clear() {
        RedisConnection connection = null;
        try {
            connection = jedisConnectionFactory.getConnection();
            connection.flushDb();
            connection.flushAll();
        } catch (JedisConnectionException e) {
            e.printStackTrace();
        } finally {
            if (connection != null) {
                connection.close();
            }
        }
    }

    @Override
    public String getId() {
        return this.id;
    }

    @Override
    public Object getObject(Object key) {
        Object result = null;
        RedisConnection connection = null;
        try {
            connection = jedisConnectionFactory.getConnection();
            RedisSerializer<Object> serializer = new JdkSerializationRedisSerializer();
            result = serializer.deserialize(connection.get(serializer.serialize(key)));
        } catch (JedisConnectionException e) {
            e.printStackTrace();
        } finally {
            if (connection != null) {
                connection.close();
            }
        }
        return result;
    }

    @Override
    public ReadWriteLock getReadWriteLock() {
        return this.readWriteLock;
    }

    @Override
    public int getSize() {
        int result = 0;
        RedisConnection connection = null;
        try {
            connection = jedisConnectionFactory.getConnection();
            result = Integer.valueOf(connection.dbSize().toString());
        } catch (JedisConnectionException e) {
            e.printStackTrace();
        } finally {
            if (connection != null) {
                connection.close();
            }
        }
        return result;
    }

    @Override
    public void putObject(Object key, Object value) {
        RedisConnection connection = null;
        try {
            connection = jedisConnectionFactory.getConnection();
            RedisSerializer<Object> serializer = new JdkSerializationRedisSerializer();
            connection.set(serializer.serialize(key), serializer.serialize(value));
        } catch (JedisConnectionException e) {
            e.printStackTrace();
        } finally {
            if (connection != null) {
                connection.close();
            }
        }
    }

    @Override
    public Object removeObject(Object key) {
        RedisConnection connection = null;
        Object result = null;
        try {
            connection = jedisConnectionFactory.getConnection();
            RedisSerializer<Object> serializer = new JdkSerializationRedisSerializer();
            result = connection.expire(serializer.serialize(key), 0);
        } catch (JedisConnectionException e) {
            e.printStackTrace();
        } finally {
            if (connection != null) {
                connection.close();
            }
        }
        return result;
    }

    public static void setJedisConnectionFactory(JedisConnectionFactory jedisConnectionFactory) {
        MybatisRedisCache.jedisConnectionFactory = jedisConnectionFactory;
    }

}

注意:

可以看到,这个类并不是由Spring虚拟机管理的类,但是,其中有一个静态属性jedisConnectionFactory需要注入一个Spring bean,也就是在RedisConfig中生成的bean。

在一个普通类中使用Spring虚拟机管理的Bean,一般使用Springboot自省的SpringContextAware。

 

这里使用了另一种方式,静态注入的方式。这个方式是通过RedisCacheTransfer来实现的。

 

4、静态注入

RedisCacheTransfer.java

@Component
public class RedisCacheTransfer {

    @Autowired
    public void setJedisConnectionFactory(JedisConnectionFactory jedisConnectionFactory) {
        MybatisRedisCache.setJedisConnectionFactory(jedisConnectionFactory);
    }

}

可以看到RedisCacheTransfer是一个springboot bean,在容器创建之初进行初始化的时候,会注入jedisConnectionFactory bean给setJedisConnectionFactory方法的传参。

而setJedisConnectionFactory通过调用静态方法设置了类MybatisRedisCache的静态属性jedisConnectionFactory。

这样就把spring容器管理的jedisConnectionFactory注入到了静态域。

 

到这里,代码基本已经搞定,下面是一些配置。主要有(1)全局开关;(2)namespace作用域开关;(3)Model实例序列化。

 

5、Mybatis二级缓存的全局开关

前面提到过,默认二级缓存没有打开,需要设置为true。这是全局二级缓存的开关。

Mybatis的全局配置。

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE configuration PUBLIC "-//mybatis.org//DTD Config 3.0//EN" "http://mybatis.org/dtd/mybatis-3-config.dtd">

<configuration>
    <!-- 全局参数 -->
    <settings>
        <!-- 使全局的映射器启用或禁用缓存。 -->
        <setting name="cacheEnabled" value="true"/>
    </settings>

</configuration>

全局配置的加载在dataSource中可以是这样的。

bean.setMapperLocations(new PathMatchingResourcePatternResolver().getResources("classpath:mybatis-mapper/*.xml"));

指定了mapper.xml的存放路径,在mybatis-mapper路径下,所有后缀是.xml的都会读入。

bean.setConfigLocation(new ClassPathResource("mybatis-config.xml"));

指定了mybatis-config.xml的存放路径,直接放在Resource目录下即可。

@Bean(name = "moonlightSqlSessionFactory")
    @Primary
    public SqlSessionFactory moonlightSqlSessionFactory(@Qualifier("moonlightData") DataSource dataSource) throws Exception {
        SqlSessionFactoryBean bean = new SqlSessionFactoryBean();
        bean.setDataSource(dataSource);
        bean.setMapperLocations(new PathMatchingResourcePatternResolver().getResources("classpath:mybatis-mapper/*.xml"));
        bean.setConfigLocation(new ClassPathResource("mybatis-config.xml"));
        return bean.getObject();
    }

 

6、配置mapper作用域namespace

前面提到过,二级缓存的作用域是mapper的namespace,所以这个配置需要到mapper中去写。

<mapper namespace="com.kangaroo.studio.moonlight.dao.mapper.MoonlightMapper">
  <cache type="com.kangaroo.studio.moonlight.dao.cache.MybatisRedisCache"/>
  <resultMap id="geoFenceList" type="com.kangaroo.studio.moonlight.dao.model.GeoFence">
    <constructor>
      <idArg column="id" javaType="java.lang.Integer" jdbcType="INTEGER" />
      <arg column="name" javaType="java.lang.String" jdbcType="VARCHAR" />
      <arg column="type" javaType="java.lang.Integer" jdbcType="INTEGER" />
      <arg column="group" javaType="java.lang.String" jdbcType="VARCHAR" />
      <arg column="geo" javaType="java.lang.String" jdbcType="VARCHAR" />
      <arg column="createTime" javaType="java.lang.String" jdbcType="VARCHAR" />
      <arg column="updateTime" javaType="java.lang.String" jdbcType="VARCHAR" />
    </constructor>
  </resultMap>

<select id="queryGeoFence" parameterType="com.kangaroo.studio.moonlight.dao.model.GeoFenceQueryParam" resultMap="geoFenceList">
    select <include refid="base_column"/> from geoFence where 1=1
    <if test="type != null">
      and type = #{type}
    </if>
    <if test="name != null">
      and name like concat('%', #{name},'%')
    </if>
    <if test="group != null">
      and `group` like concat('%', #{group},'%')
    </if>
    <if test="startTime != null">
      and createTime &gt;= #{startTime}
    </if>
    <if test="endTime != null">
      and createTime &lt;= #{endTime}
    </if>
  </select>
</mapper>

注意:

namespace下的cache标签就是加载缓存的配置,缓存使用的正式我们刚才实现的MybatisRedisCache。

<cache type="com.kangaroo.studio.moonlight.dao.cache.MybatisRedisCache"/>

 这里只实现了一个查询queryGeoFence,你可以在select标签中,开启或者关闭这个sql的缓存。使用属性值useCache=true/false。

 

7、Mapper和Model

读写缓存Model需要序列化:只需要类声明的时候实现Seriaziable接口就好了。

public class GeoFence implements Serializable {
    // setter和getter省略  
}
public class GeoFenceParam implements Serializable {
    // setter和getter省略  
}

 

mapper就还是以前的写法,使用mapper.xml的方式这里只需要定义出抽象函数即可。

@Mapper
public interface MoonlightMapper {
    List<GeoFence> queryGeoFence(GeoFenceQueryParam geoFenceQueryParam);
}

 

 

到这里,所有的代码和配置都完成了,下面测试一下。

 

8、测试一下

Controller中实现一个这样的接口POST。

@RequestMapping(value = "/fence/query", method = RequestMethod.POST)
    @ResponseBody
    public ResponseEntity<Response> queryFence(@RequestBody GeoFenceQueryParam geoFenceQueryParam) {
        try {
            Integer pageNum = geoFenceQueryParam.getPageNum()!=null?geoFenceQueryParam.getPageNum():1;
            Integer pageSize = geoFenceQueryParam.getPageSize()!=null?geoFenceQueryParam.getPageSize():10;
            PageHelper.startPage(pageNum, pageSize);
            List<GeoFence> list = moonlightMapper.queryGeoFence(geoFenceQueryParam);
            return new ResponseEntity<>(
                    new Response(ResultCode.SUCCESS, "查询geoFence成功", list),
                    HttpStatus.OK);
        } catch (Exception e) {
            logger.error("查询geoFence失败", e);
            return new ResponseEntity<>(
                    new Response(ResultCode.EXCEPTION, "查询geoFence失败", null),
                    HttpStatus.INTERNAL_SERVER_ERROR);
        }

 使用curl发送请求,注意

1)-H - Content-type:application/json方式

2)-d - 后面是json格式的参数包体

curl -H "Content-Type:application/json" -XPOST http://。。。/moonlight/fence/query -d '{
    "name" : "test",
    "group": "test",
    "type": 1,
    "startTime":"2017-12-06 00:00:00",
    "endTime":"2017-12-06 16:00:00",
    "pageNum": 1,
    "pageSize": 8
}'

请求了三次,日志打印如下,

可以看到,只有第一次执行了sql模板查询,后面都是命中了缓存。

在我们的测试环境中由于数据量比较小,缓存对查询速度的优化并不明显。这里就不过多说明了。

最后上一篇打脸文。给你参考http://blog.csdn.net/isea533/article/details/44566257 

 

 完毕。

 

posted @ 2017-12-11 08:26  扎心了老铁  阅读(16596)  评论(0编辑  收藏  举报